+0  
 
0
34
2
avatar

What is the minimum possible value for y:

 

$y = x^2 + 12x + 5$ 

 Feb 26, 2019
 #1
avatar+98060 
+1

y = x^2 + 12x + 5

 

In the form    ax^2 + bx + c.....the x value that minimizes y is given by   -b / (2a)

 

So.....the x value that minimizes y is given by   -12 / (2 * 1)  =  -12 / 2  = -6

 

Put this into the function and we get that y =   (-6)^2 + 12(-6) + 5 =   36 - 72 + 5 =  -36 + 5  = -31

 

 

cool cool cool

 Feb 26, 2019
edited by CPhill  Feb 26, 2019
 #2
avatar+21827 
+1

What is the minimum possible value for y:

y = x^2 + 12x + 5

 

\(\begin{array}{|lrcll|} \hline & y &=& x^2 + 12x + 5 \\ & &=& (x+6)^2 -36+5 \\ & &=& (x+6)^2 -31 \qquad \text{min. if } x = -6 \\ & y &=& 0 -31 \\ & y &=& -31 \\ \hline \end{array}\)

 

The smallest value of the expression \(y= x^2 + 12x + 5\) is -31

 

laugh

 Feb 26, 2019

30 Online Users

avatar
avatar