We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
127
2
avatar

What is the minimum possible value for y:

 

$y = x^2 + 12x + 5$ 

 Feb 26, 2019
 #1
avatar+102921 
+1

y = x^2 + 12x + 5

 

In the form    ax^2 + bx + c.....the x value that minimizes y is given by   -b / (2a)

 

So.....the x value that minimizes y is given by   -12 / (2 * 1)  =  -12 / 2  = -6

 

Put this into the function and we get that y =   (-6)^2 + 12(-6) + 5 =   36 - 72 + 5 =  -36 + 5  = -31

 

 

cool cool cool

 Feb 26, 2019
edited by CPhill  Feb 26, 2019
 #2
avatar+23041 
+1

What is the minimum possible value for y:

y = x^2 + 12x + 5

 

\(\begin{array}{|lrcll|} \hline & y &=& x^2 + 12x + 5 \\ & &=& (x+6)^2 -36+5 \\ & &=& (x+6)^2 -31 \qquad \text{min. if } x = -6 \\ & y &=& 0 -31 \\ & y &=& -31 \\ \hline \end{array}\)

 

The smallest value of the expression \(y= x^2 + 12x + 5\) is -31

 

laugh

 Feb 26, 2019

19 Online Users

avatar