+0  
 
0
54
1
avatar

a and b are the roots of 2x^2 - 3x - 1 = 0.  Find a/b + b/a.

 Jun 24, 2020
 #1
avatar+302 
0

There's not a simple way to factorize \(2x^2 - 3x - 1 = 0\), so instead we simplify \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{(a+b)^2-2ab}{ab}=\frac{(a+b)^2}{ab}-2\)

Using Vieta's Formula, a+b = 3/2 and ab = -1/2.

Plug these in to get \(\frac{(3/2)^2}{-1/2}-2=\frac{9/4}{-1/2}-2=-\frac{9}{2}-2=\frac{-13}{2}\)

 Jun 24, 2020

7 Online Users