+0  
 
0
114
1
avatar

The graph of the quadratic y = ax^2 + bx + c has the following properties: (1) The maximum value of y = ax^2 + bx + c is 5, which occurs at x = 3. (2) The graph passes through the point (0,8). If the graph passes through the point (4,m), then what is the value of m?

 Apr 22, 2021

Best Answer 

 #1
avatar+570 
+1

5 = 9a+3b+c

 

8 = 0 + 0 + c

 

c=8

 

-3 = 9a + 3b

 

m = 16a+4b+8

 

m-8 = 16a + 4b

 

m-5 = 7a +b

 

3b = -9a - 3
b=-3a-1

 

m = 5 + 4a-1 = 4a+4

m=a2^2+b2+8

2b+8=4

b=-2

a=1/3

 

m=4+4/3=$\boxed{\dfrac{16}3}$

 Apr 22, 2021
 #1
avatar+570 
+1
Best Answer

5 = 9a+3b+c

 

8 = 0 + 0 + c

 

c=8

 

-3 = 9a + 3b

 

m = 16a+4b+8

 

m-8 = 16a + 4b

 

m-5 = 7a +b

 

3b = -9a - 3
b=-3a-1

 

m = 5 + 4a-1 = 4a+4

m=a2^2+b2+8

2b+8=4

b=-2

a=1/3

 

m=4+4/3=$\boxed{\dfrac{16}3}$

SparklingWater2 Apr 22, 2021

38 Online Users

avatar