+0  
 
0
38
1
avatar

If n is a constant and if there exists a unique value of m for which the quadratic equation $x^2 + mx + (2m+n) = 0$ has one real solution, then find n.

 Nov 11, 2021
 #1
avatar+12691 
+1

 Find n.

 

Hello Guest!

 

\(x^2 + mx + (2m+n) = 0\\ x=-\frac{m}{2}\pm \sqrt{(\frac{m}{2})^2-2m-n}\\ n\le m( \frac{m}{4}-2)\)

if m = 8 then  n = 0

so

x = - 4

laugh  !

 Nov 12, 2021

22 Online Users

avatar
avatar