+0  
 
0
46
3
avatar

In a trapezoid $ABCD$ with $AB$ parallel to $CD$, the diagonals $AC$ and $BD$ intersect at $E$. If the area of triangle $ABE$ is 50 square units, and the area of triangle$ADE$ is 20 square units, what is the area of trapezoid $ABCD$?

Guest Nov 19, 2018
 #1
avatar+20680 
+8

In a trapezoid $ABCD$ with $AB$ parallel to $CD$, the diagonals $AC$ and $BD$ intersect at $E$.

If the area of triangle $ABE$ is 50 square units, and the area of triangle$ADE$ is 20 square units,

what is the area of trapezoid $ABCD$?

 

\(\text{Let Area $A_1=[ADE] = 20 $}\\ \text{Let Area $A_2=[ABE] = 50 $}\\ \text{Let Area $A_3=[DEC] $}\\ \text{Let Area $A_4=[BEC] $}\\ \text{Let Area $A_5=[ADC] $}\\ \text{Let Area $A_6=[BDC] $}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{A_2}{A_1} &=& \dfrac{50}{20} \\ &=& \dfrac52 \\\\ \hline A_1 &=& \dfrac{DE\cdot AH}{2} \\\\ A_2 &=& \dfrac{BE\cdot AH}{2} \\\\ A_3 &=& \dfrac{DE\cdot CK}{2} \\\\ A_4 &=& \dfrac{BE\cdot CK}{2} \\ \hline \\ \dfrac{A_2}{A_1} &=& \dfrac{\dfrac{BE\cdot AH}{2}}{\dfrac{DE\cdot AH}{2}} \\\\ &=& \dfrac{BE\cdot AH}{DE\cdot AH} \\\\ \dfrac{A_2}{A_1} &=& \dfrac{BE}{DE} \quad & | \quad \dfrac{A_2}{A_1} = \dfrac52 \\\\ \mathbf{\dfrac52} & \mathbf{=}& \mathbf{\dfrac{BE}{DE}} \\\\ \hline \dfrac{A_4}{A_3} &=& \dfrac{\dfrac{BE\cdot CK}{2}}{\dfrac{DE\cdot CK}{2}} \\\\ &=& \dfrac{BE\cdot CK}{DE\cdot CK} \\\\ \dfrac{A_4}{A_3} &=& \dfrac{BE}{DE} \quad & | \quad \dfrac{BE}{DE} = \dfrac52 \\\\ \mathbf{\dfrac{A_4}{A_3}} &\mathbf{=}& \mathbf{\dfrac52} \qquad \text{or} \qquad \mathbf{A_3 = \dfrac{2}{5}\cdot A_4 } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline AM &=& BN \\ \hline \\ A_5 &=& \dfrac{DC\cdot AM}{2} \\\\ A_6 &=& \dfrac{DC\cdot BN}{2} \\ \hline \\ \dfrac{A_5}{A_6} &=& \dfrac{\dfrac{DC\cdot AM}{2}}{\dfrac{DC\cdot BN}{2}} \\\\ &=& \dfrac{DC\cdot AM}{DC\cdot BN} \quad & | \quad AM=BN \\\\ &=& \dfrac{DC\cdot BN}{DC\cdot BN} \\\\ \dfrac{A_5}{A_6} &=& 1 \\\\ \mathbf{ A_5 } & \mathbf{=} & \mathbf{A_6} \quad & | \quad A_5 = A_1+A_3,\quad A_6 =A_4+A_3 \\ A_1+A_3 &=& A_4+A_3 \quad & | \ -A_3\\ A_1 &=& A_4 \quad & | \quad A_1 = 20\\ \mathbf{20} & \mathbf{=}& \mathbf{ A_4 } \\ \hline \\ \mathbf{A_3} & \mathbf{=} & \mathbf{ \dfrac{2}{5}\cdot A_4 } \quad | \quad A_4 = 20 \\ A_3 &=& \dfrac{2}{5}\cdot 20 \\ \mathbf{A_3} & \mathbf{=} & \mathbf{ 8 } \\ \hline \end{array}\)

 

\(\text{The area of trapezoid $ABCD = A_1+A_2+A_3+A_4 = 20+50+8+20=\mathbf{98}$ }\)

 

laugh

heureka  Nov 20, 2018
 #2
avatar+92808 
+2

Very nice, heureka  !!!!

 

 

cool cool cool

CPhill  Nov 20, 2018
 #3
avatar+20680 
+9

Thank you, CPhill

 

laugh

heureka  Nov 21, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.