+0  
 
0
38
1
avatar

My expression is as shown: \({8y^2 - 2y - 3\over y^2 - 1}\)÷\({2y^2 - 3y - 2 \over 2y - 2}\)÷\({3 - 4y \over y + 1}\)

I know that when dividing rational expressions, you follow procedures similar to dividing fractions: convert the division to multiplication by mulitiplying by the reciprocal of the divisor.

 

However, I'm given three rational expressions... do I apply the same procedures to both of the second and third rational expressions? Or should I just "divide" the first two, then with my answer, divide the third expression?

 

I never came across a question like this so I wanted to make sure what I was doing was correct...

Guest Apr 3, 2018
Sort: 

1+0 Answers

 #1
avatar+6959 
+3

a  ÷  b  ÷  c   =   (a  ÷  b)  ÷  c

 

So...

 

\(\begin{array}\ \frac{8y^2-2y-3}{y^2-1}\div\frac{2y^2-3y-2}{2y-2}\div\frac{3-4y}{y+1}\,&=&\,\Big(\frac{8y^2-2y-3}{y^2-1}\div\frac{2y^2-3y-2}{2y-2}\Big)\div\frac{3-4y}{y+1}\\~\\ &=&\,\Big(\frac{8y^2-2y-3}{y^2-1}\cdot\frac{2y-2}{2y^2-3y-2}\Big)\div\frac{3-4y}{y+1}\\~\\ &=&\,\Big(\frac{8y^2-2y-3}{y^2-1}\cdot\frac{2y-2}{2y^2-3y-2}\Big)\cdot\frac{y+1}{3-4y}\\~\\ &=&\,\frac{8y^2-2y-3}{y^2-1}\cdot\frac{2y-2}{2y^2-3y-2}\cdot\frac{y+1}{3-4y}\\~\\ &=&\,\frac{(8y^2-2y-3)(2y-2)(y+1)}{(y^2-1)(2y^2-3y-2)(3-4y)} \end{array}\)

 

Then we can factor the numerator and denominators and cancel the common factors.

 

\(\begin{array}\ \frac{8y^2-2y-3}{y^2-1}\div\frac{2y^2-3y-2}{2y-2}\div\frac{3-4y}{y+1}\,&=&\,\frac{(8y^2-2y-3)(2y-2)(y+1)}{(y^2-1)(2y^2-3y-2)(3-4y)}\\~\\ &=&\,\frac{(2y+1)(4y-3)(2)(y-1)(y+1)}{(y+1)(y-1)(y-2)(2y+1)(-1)(4y-3)}\\~\\ &=&\,\frac{(2)}{(y-2)(-1)} \\~\\ &=&\,-\frac{2}{y-2}\qquad\text{and }\,y\neq-1,1,-\frac12,\frac34 \end{array}\)

 

 

So in this case, flipping the latter two fractions and changing the signs to multiplication will work. But note that if problem were given as  a ÷ (b ÷ c) , only the middle fraction would end up being flipped. So it is easiest to do them one at a time. Just remember that if there are no parenthesees given, it means the same as  (a ÷ b) ÷ c  .  smiley

hectictar  Apr 3, 2018

25 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details