+0  
 
0
225
2
avatar

Let ABCD be a parallelogram. We have that M is the midpoint of AB and N is the midpoint of BC. The segments DM and DN intersect AC at P and Q, respectively. If AC = 15, what is QA?

Guest Mar 26, 2018

Best Answer 

 #1
avatar+20597 
+3

Let ABCD be a parallelogram. We have that M is the midpoint of AB and N is the midpoint of BC. 

The segments DM and DN intersect AC at P and Q, respectively.

If AC = 15, what is QA?

 

 

\(\text{Let $NC = \dfrac{AD}{2} $ } \)

 

intercept theorem:

\(\begin{array}{|rcll|} \hline \dfrac {QC}{NC} &=& \dfrac{QA}{AD} \quad & | \quad QC = AC - QA \\\\ \dfrac {AC - QA }{NC} &=& \dfrac{QA}{AD} \\\\ (AC - QA )\cdot AD &=& NC \cdot QA \quad & | \quad NC = \dfrac{AD}{2} \\\\ (AC - QA )\cdot AD &=& \dfrac{AD}{2} \cdot QA \quad & | \quad : AD \\\\ AC - QA &=& \dfrac{ QA}{2} \\\\ AC &=& QA + \dfrac{ QA}{2} \\\\ AC &=& \dfrac{3}{2}QA \\\\ \dfrac{3}{2}QA &=& AC \\\\ QA &=& \dfrac{2}{3}AC \quad & | \quad AC = 15 \\\\ QA &=& \dfrac{2}{3}\cdot 15 \\\\ QA &=& 2\cdot 5 \\\\ \mathbf{QA} & \mathbf{=} & \mathbf{10} \\ \hline \end{array}\)

 

laugh

heureka  Mar 26, 2018
edited by heureka  Mar 26, 2018
 #1
avatar+20597 
+3
Best Answer

Let ABCD be a parallelogram. We have that M is the midpoint of AB and N is the midpoint of BC. 

The segments DM and DN intersect AC at P and Q, respectively.

If AC = 15, what is QA?

 

 

\(\text{Let $NC = \dfrac{AD}{2} $ } \)

 

intercept theorem:

\(\begin{array}{|rcll|} \hline \dfrac {QC}{NC} &=& \dfrac{QA}{AD} \quad & | \quad QC = AC - QA \\\\ \dfrac {AC - QA }{NC} &=& \dfrac{QA}{AD} \\\\ (AC - QA )\cdot AD &=& NC \cdot QA \quad & | \quad NC = \dfrac{AD}{2} \\\\ (AC - QA )\cdot AD &=& \dfrac{AD}{2} \cdot QA \quad & | \quad : AD \\\\ AC - QA &=& \dfrac{ QA}{2} \\\\ AC &=& QA + \dfrac{ QA}{2} \\\\ AC &=& \dfrac{3}{2}QA \\\\ \dfrac{3}{2}QA &=& AC \\\\ QA &=& \dfrac{2}{3}AC \quad & | \quad AC = 15 \\\\ QA &=& \dfrac{2}{3}\cdot 15 \\\\ QA &=& 2\cdot 5 \\\\ \mathbf{QA} & \mathbf{=} & \mathbf{10} \\ \hline \end{array}\)

 

laugh

heureka  Mar 26, 2018
edited by heureka  Mar 26, 2018
 #2
avatar+92533 
0

Nice, heureka!!!....one question....what is the  intercept theorem???.....I've seen you refer to this several times in the past.....

 

 

 

cool cool cool

CPhill  Mar 26, 2018

34 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.