+0  
 
0
194
1
avatar

Medians are drawn from point A and point B in this right triangle to divide segments BC and AC in half, respectively. The lengths of the medians are 6 and 2\sqrt{11} units, respectively. How many units are in the length of segment AB.

Guest Mar 28, 2018
 #1
avatar+20144 
+2

Medians are drawn from point A and point B in this right triangle to divide segments BC and AC in half, respectively. The lengths of the medians are 6 and \( 2\sqrt{11}\) units, respectively.

How many units are in the length of segment AB.

 

\(\text{Let $c = AB $} \\ \text{Let $a = BC $} \\ \text{Let $b = CA $} \)

 

\(\begin{array}{|lrcll|} \hline (1) & \left(\dfrac{1}{2}a \right)^2 + b^2 &=& 6^2 \\ (2) & a^2 + \left(\dfrac{1}{2}b \right)^2 &=& (2\sqrt{11})^2 \\ \hline (1) + (2): & \left(\dfrac{1}{2}a \right)^2 + b^2 + a^2 + \left(\dfrac{1}{2}b \right)^2 &=& 6^2 + (2\sqrt{11})^2 \\ & \dfrac{5}{4}a^2 + \dfrac{5}{4}b^2 &=& 36+44 \\ & \dfrac{5}{4}(a^2 + b^2) &=& 80 \quad & | \quad a^2+b^2=c^2 \\ & \dfrac{5}{4}c^2 &=& 80 \\ & c^2 &=& \dfrac{4\cdot 80}{5} \\ & c^2 &=& 4\cdot 16 \\ & c &=& 2\cdot 4 \\ & \mathbf{c} & \mathbf{=} & \mathbf{8} \\ \hline \end{array}\)

 

The length of segment AB = 8

 

laugh

heureka  Mar 28, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.