+0  
 
0
41
1
avatar

Medians are drawn from point A and point B in this right triangle to divide segments BC and AC in half, respectively. The lengths of the medians are 6 and 2\sqrt{11} units, respectively. How many units are in the length of segment AB.

Guest Mar 28, 2018
Sort: 

1+0 Answers

 #1
avatar+19207 
+1

Medians are drawn from point A and point B in this right triangle to divide segments BC and AC in half, respectively. The lengths of the medians are 6 and \( 2\sqrt{11}\) units, respectively.

How many units are in the length of segment AB.

 

\(\text{Let $c = AB $} \\ \text{Let $a = BC $} \\ \text{Let $b = CA $} \)

 

\(\begin{array}{|lrcll|} \hline (1) & \left(\dfrac{1}{2}a \right)^2 + b^2 &=& 6^2 \\ (2) & a^2 + \left(\dfrac{1}{2}b \right)^2 &=& (2\sqrt{11})^2 \\ \hline (1) + (2): & \left(\dfrac{1}{2}a \right)^2 + b^2 + a^2 + \left(\dfrac{1}{2}b \right)^2 &=& 6^2 + (2\sqrt{11})^2 \\ & \dfrac{5}{4}a^2 + \dfrac{5}{4}b^2 &=& 36+44 \\ & \dfrac{5}{4}(a^2 + b^2) &=& 80 \quad & | \quad a^2+b^2=c^2 \\ & \dfrac{5}{4}c^2 &=& 80 \\ & c^2 &=& \dfrac{4\cdot 80}{5} \\ & c^2 &=& 4\cdot 16 \\ & c &=& 2\cdot 4 \\ & \mathbf{c} & \mathbf{=} & \mathbf{8} \\ \hline \end{array}\)

 

The length of segment AB = 8

 

laugh

heureka  Mar 28, 2018

9 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details