We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
194
3
avatar+814 

Find the product of the y-coordinates of all the distinct solutions (x,y) for the two equations \(y=x^2-8\) and \(y^2=-5x+44.\)

 Aug 25, 2018
 #1
avatar+101796 
+2

y = x^2  - 8   ⇒  y^2  = x^4 - 16x^2 + 64   (1)

y^2  = -5x + 44    (2)

 

Set (1)  = (2)   and solve for x

 

x^4 - 16x^2 + 64  = -5x + 44

x^4 - 16x^2  + 5x  + 20  = 0

x^2 (x^2 - 16) + 5( x +  4)  = 0

x^2 (x + 4)(x - 4) + 5 (x + 4)  = 0

(x + 4) [ x^2 ( x - 4) + 5 ]   =  0

( x + 4) [ x^3 - 4x^2 + 5 ] = 0

x = -4  is one solution

Also  x = -1  is another solution

 

To find the remaining polynomial  use synthetic division

 

-1 [ 1  - 4    0     5]

           -1    5    -5

   ____________

     1   -5    5     0

 

So...the remaining polynomial is  x^2 - 5x + 5....set to  0

x^2-5x + 5  = 0

x^2 - 5x + 25/4  = -5 + 25/4

(x - 5/2)^2  = 5/4     take both roots

x - 5/2  = ± √5 /2

x = 5/2 + √5/2    or     5/2 - √5/2

 

When  x  = -4, y= (-4)^2 - 8   = 8

           x = -1 , y = (-1)^2 - 8  = -7

           x = 5/2 + √5/2,   y = (5//2  + √5/2)^2  - 8  =  (1/2)(5√5 - 1)= (1/2)(√125 - 1)

            x = 5/2  - √5/2, y = (5/2 - √5/2)^2  - 8  = (-1/2)(5√5 + 1)  = (-1/2)(√125 + 1)

 

So....the product of the y coordinates is

 

( 8 * -7 * (1/2)*(-1/2)(√125 - 1)(√125 + 1 ] =

 

[ -56 * (-1/4) * (125 - 1) ] =

 

[ 14 * 124 ]  =

 

1736

 

 

cool cool cool

 Aug 25, 2018
 #2
avatar+814 
+2

Thank you, CPhill!

mathtoo  Aug 25, 2018
 #3
avatar+101796 
+2

No prob, Mathtoo....!!!

 

 

 

cool cool cool

CPhill  Aug 25, 2018

14 Online Users

avatar
avatar