+0  
 
0
252
2
avatar

what number does x equal if 30 is less than 48x - 16x2

Guest Apr 18, 2017

Best Answer 

 #1
avatar+7324 
+2

30 < 48x - 16x2

0 < -16x2 + 48x - 30

 

Let's set this = 0 and then use the quadratic formula to solve for x.

 

\(x = {-48 \pm \sqrt{48^2-4(-16)(-30)} \over 2(-16)}={-48 \pm \sqrt{2304-1920} \over -32}={-48 \pm 8\sqrt{6} \over -32}=\frac{-6\pm \sqrt6}{-4} \\~\\ x=\frac{-6+\sqrt6}{-4} = \frac{6-\sqrt6}{4} \hspace{2cm}\text{or}\hspace{2cm} x=\frac{-6-\sqrt6}{-4}=\frac{6+\sqrt6}{4}\)

 

 

So -16x2 + 48x - 30 = 0 when x = the above values.

 

But we want to know what x values cause it to be greater than 0.

We want to know what x values make this true: 0 < -16x2 + 48x - 30

 

It will either be x values in the interval: \((\frac{6-\sqrt6}{4} , \frac{6+\sqrt6}{4} )\)

OR it will be x values in the interval: \( (-\infty, \frac{6-\sqrt6}{4} ) \cup (\frac{6+\sqrt6}{4} , \infty ) \)

 

To determine which, test a number for x and see if it makes a true statement.

 

Let's test x = 0, which is in the second interval listed.

0 < -16(0)2 + 48(0) - 30

0 < -30       false

 

Let's test x = 1, which is in the first interval listed.

0 < -16(1)2 + 48(1) - 30

0 < 2           true

 

Therefore x is in the interval: \( (\frac{6-\sqrt6}{4} , \frac{6+\sqrt6}{4} ) \)

hectictar  Apr 18, 2017
edited by hectictar  Apr 18, 2017
 #1
avatar+7324 
+2
Best Answer

30 < 48x - 16x2

0 < -16x2 + 48x - 30

 

Let's set this = 0 and then use the quadratic formula to solve for x.

 

\(x = {-48 \pm \sqrt{48^2-4(-16)(-30)} \over 2(-16)}={-48 \pm \sqrt{2304-1920} \over -32}={-48 \pm 8\sqrt{6} \over -32}=\frac{-6\pm \sqrt6}{-4} \\~\\ x=\frac{-6+\sqrt6}{-4} = \frac{6-\sqrt6}{4} \hspace{2cm}\text{or}\hspace{2cm} x=\frac{-6-\sqrt6}{-4}=\frac{6+\sqrt6}{4}\)

 

 

So -16x2 + 48x - 30 = 0 when x = the above values.

 

But we want to know what x values cause it to be greater than 0.

We want to know what x values make this true: 0 < -16x2 + 48x - 30

 

It will either be x values in the interval: \((\frac{6-\sqrt6}{4} , \frac{6+\sqrt6}{4} )\)

OR it will be x values in the interval: \( (-\infty, \frac{6-\sqrt6}{4} ) \cup (\frac{6+\sqrt6}{4} , \infty ) \)

 

To determine which, test a number for x and see if it makes a true statement.

 

Let's test x = 0, which is in the second interval listed.

0 < -16(0)2 + 48(0) - 30

0 < -30       false

 

Let's test x = 1, which is in the first interval listed.

0 < -16(1)2 + 48(1) - 30

0 < 2           true

 

Therefore x is in the interval: \( (\frac{6-\sqrt6}{4} , \frac{6+\sqrt6}{4} ) \)

hectictar  Apr 18, 2017
edited by hectictar  Apr 18, 2017
 #2
avatar+89953 
+2

48x - 16x^2  > 30  rewrite as

 

0 > 16x^2 - 48x + 30    rewrite again as 

 

16x^2 - 48x + 30 < 0       divide through by 2

 

8x^2 - 24x + 15 < 0          set equal to 0

 

8x^2 - 24x + 15  = 0

 

Using the quadratic formula, we have

 

x  =   [24  ± √[ (-24^2  - 4(8)(15) / [ 2 * 8]  =

 

[ 24 ± √96] / 16      =  [ 24 ± 4√6] / 16   =   [ 6  ± √6] / 4

 

We  have 3 intervals to test here......either the middle interval works or the two "outside" intervals do

 

The intervals are  (-inf, [6 - √6]/ 4 )  ,  (  [6 - √6]/ 4,  [6 +√6]/ 4 ), (  [6 + √6]/ 4 , inf)

 

Pick a point in the middle interval - I'll choose 1 - and test it in the original problem

 

48(1) - 16(1)^2  > 30

32  >  30       this is utrue......thus this interval solves the problem

 

And the solution is  :   (  [6 - √6]/ 4,  [6 +√6]/ 4 )  

 

 

cool cool cool

CPhill  Apr 18, 2017

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.