question x = ?
sinx +cosx = √6/2
Hello Guest!
\(sinx+cosx=\frac{1}{2}\sqrt{2}\\ sinx+\sqrt{1-sin^2x}=\frac{1}{2}\sqrt{2}\\ sinx=u\\ u+\sqrt{1-u^2}=\frac{1}{2}\sqrt{2}\\ \sqrt{1-u^2}=\frac{1}{2}\sqrt{2}-u\) \(sinx-\sqrt{1-sin^2x}=\frac{1}{2}\sqrt{2}\) (also pursue!)
\(1-u^2=\frac{1}{2}-\sqrt{2}\cdot u+u^2\\ 2u^2-\sqrt{2}\cdot u-\frac{1}{2}=0\\ u^2-\frac{1}{2}\sqrt{2}\cdot u-\frac{1}{4}=0 \)
\(u=\frac{1}{4}\sqrt{2}\pm \sqrt{\frac{1}{8}+\frac{1}{4}}\\ u=\frac{1}{4}\sqrt{2}\pm \sqrt{\frac{3}{8}}\\\)
\(u_1=sinx_1=0.96592\\ u_2=sinx_2=-0.25882\)
\(x_1=105°\\ x_2=-15°\)
!