+0  
 
0
203
1
avatar

For complex numbers $z$, let \[f(z) = \left\{ \begin{array}{cl} z^{2}&\text{ if }z\text{ is not real}, \\ z+2 &\text{ if }z\text{ is real}. \end{array} \right.\]Find $f(i)+f(1)+f(-1)+f(-i)$.

Guest Aug 29, 2017
 #1
avatar+19479 
+2

question

 

\(\text{For complex numbers } \\ z, \text{let } \left[f(z) = \left\{ \begin{array}{cl} z^{2}&\text{ if }z\text{ is not real}, \\ z+2 &\text{ if }z\text{ is real}. \end{array} \right.\right] \\ \text{Find } f(i)+f(1)+f(-1)+f(-i).\)

 

\(\begin{array}{|l|clcrc|l|} \hline z = i && f(i) = z^2 = i^2 &=& -1 && \text{(z is not real)} \\ z = 1 && f(1) = z+2 = 1+2 &=& 3 && \text{(z is real)} \\ z = -1 && f(-1) = z+2 = -1+2 &=& 1 && \text{(z is real)} \\ z = -i && f(-i) = z^2 = (-i)^2 = i^2 &=& -1 && \text{(z is not real)} \\ \hline && f(i)+f(1)+f(-1)+f(-i) = -1+3+1-1 = 2 \\ \hline \end{array} \)

 

laugh

heureka  Aug 30, 2017

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.