We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
325
1
avatar

For complex numbers $z$, let \[f(z) = \left\{ \begin{array}{cl} z^{2}&\text{ if }z\text{ is not real}, \\ z+2 &\text{ if }z\text{ is real}. \end{array} \right.\]Find $f(i)+f(1)+f(-1)+f(-i)$.

 Aug 29, 2017
 #1
avatar+22182 
+2

question

 

\(\text{For complex numbers } \\ z, \text{let } \left[f(z) = \left\{ \begin{array}{cl} z^{2}&\text{ if }z\text{ is not real}, \\ z+2 &\text{ if }z\text{ is real}. \end{array} \right.\right] \\ \text{Find } f(i)+f(1)+f(-1)+f(-i).\)

 

\(\begin{array}{|l|clcrc|l|} \hline z = i && f(i) = z^2 = i^2 &=& -1 && \text{(z is not real)} \\ z = 1 && f(1) = z+2 = 1+2 &=& 3 && \text{(z is real)} \\ z = -1 && f(-1) = z+2 = -1+2 &=& 1 && \text{(z is real)} \\ z = -i && f(-i) = z^2 = (-i)^2 = i^2 &=& -1 && \text{(z is not real)} \\ \hline && f(i)+f(1)+f(-1)+f(-i) = -1+3+1-1 = 2 \\ \hline \end{array} \)

 

laugh

 Aug 30, 2017

25 Online Users

avatar
avatar