We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
249
1
avatar

(2x2)-4

 Jan 9, 2018
edited by Guest  Jan 9, 2018

Best Answer 

 #1
avatar+2340 
+2

Let's use the exponent rules to simplify this expression.

 

\(\left(2x^2\right)^{-4}=2^{-4}\left(x^2\right)^{-4}\) by the power of a product exponent rule.

\(2^{-4}\left(x^2\right)^{-4}=2^{-4}x^{-8}\)   by the power of a power exponent rule.

\(2^{-4}x^{-8}=\frac{1}{2^4x^8}\)               by the negative power exponent rule.

\(\frac{1}{2^4x^8}=\frac{1}{16x^8}\)                     This step does not involve an exponent rule but rather this is just simplification.

 Jan 9, 2018
 #1
avatar+2340 
+2
Best Answer

Let's use the exponent rules to simplify this expression.

 

\(\left(2x^2\right)^{-4}=2^{-4}\left(x^2\right)^{-4}\) by the power of a product exponent rule.

\(2^{-4}\left(x^2\right)^{-4}=2^{-4}x^{-8}\)   by the power of a power exponent rule.

\(2^{-4}x^{-8}=\frac{1}{2^4x^8}\)               by the negative power exponent rule.

\(\frac{1}{2^4x^8}=\frac{1}{16x^8}\)                     This step does not involve an exponent rule but rather this is just simplification.

TheXSquaredFactor Jan 9, 2018

29 Online Users

avatar
avatar
avatar
avatar