We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
336
1
avatar

Quick questions simple but not completely sure how to do it.

 Oct 31, 2017

Best Answer 

 #1
avatar+17746 
+2

a)  Numerator:         (x2y)2·(xy)3·z2  = (x2y)·(x2y)·(xy)·(xy)·(xy)·z2  =  [x2·x2·x·x·x]·[y·y·y·y·y]·z2  =  x7·y5·z2

     Denominator:     (xy2)2·y·z  =  (xy2)·(xy2)·y·z  =  [x·x]·[y2·y2·y]·z  =  x2·y5·z

 

    Combining the numerator and denominator:     [x7·y5·z2] / [x2·y5·z]  =  x5·z

 

b)  Numerator:  (12)2·(63)·52  =  (2·2·3)2·(23·32)·52  =  (22·3)2·(23·32)·52​  = 24·33·23·32·52  =  27·35·52

     Denominator:     (2·3·3)2·(3·5)  =  (2·32)2·(3·5)  =  22·34·3·5  =  22·35·5

 

     Combining the numerator and denominator:  [27·35·52] / [22·35·5]  =  25·5  =  160

 

You'll need to answer part c.

 Oct 31, 2017
 #1
avatar+17746 
+2
Best Answer

a)  Numerator:         (x2y)2·(xy)3·z2  = (x2y)·(x2y)·(xy)·(xy)·(xy)·z2  =  [x2·x2·x·x·x]·[y·y·y·y·y]·z2  =  x7·y5·z2

     Denominator:     (xy2)2·y·z  =  (xy2)·(xy2)·y·z  =  [x·x]·[y2·y2·y]·z  =  x2·y5·z

 

    Combining the numerator and denominator:     [x7·y5·z2] / [x2·y5·z]  =  x5·z

 

b)  Numerator:  (12)2·(63)·52  =  (2·2·3)2·(23·32)·52  =  (22·3)2·(23·32)·52​  = 24·33·23·32·52  =  27·35·52

     Denominator:     (2·3·3)2·(3·5)  =  (2·32)2·(3·5)  =  22·34·3·5  =  22·35·5

 

     Combining the numerator and denominator:  [27·35·52] / [22·35·5]  =  25·5  =  160

 

You'll need to answer part c.

geno3141 Oct 31, 2017

27 Online Users

avatar
avatar
avatar