We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
472
2
avatar+866 

 

What is the number of square units in the area of a triangle whose sides measure 5, 5 and 6 units?

 Apr 25, 2018
 #1
avatar+982 
+2

We use Heron's formula. 

 

\(\sqrt{s(s-a)(s-b)(s-c)}\)

 

Where s is half of the perimeter.

 

We can first solve for s, which is:

 

\((5+5+6)\div2=8\)

 

Plugging our values into the formula, we have:

 

\(\sqrt{8(8-5)(8-5)(8-6)}\)

 

The final answer is 12, 

 

I hope this helped, 

 

Gavin

 Apr 25, 2018
 #2
avatar+4249 
+3

Solution:

This triangle is isosceles, and so the altitude to the side with length 6 must hit that side at its midpoint. Thus our triangle is divided into two right triangles with hypotenuse \(5\) and one side of length \(3\). Thus each of these is a \(3-4-5\)  triangle, and each one has area \(\frac{3 \times 4}{2} = 6\), for a total area of \(\boxed{12}\).

smileysmiley

 Apr 25, 2018

17 Online Users

avatar
avatar