+0  
 
0
532
3
avatar

((r^n)^2)/(r^(6-2n))

 Feb 24, 2015

Best Answer 

 #2
avatar+118723 
+5

$$\\\frac{(r^n)^2}{r^{6-2n}}\\\\
=\frac{(r^{2n})}{r^{6-2n}}\\\\
=r^{2n-(6-2n)}\\\\
=r^{2n-6+2n)}\\\\
=r^{4n-6}\\\\$$

.
 Feb 24, 2015
 #1
avatar+529 
+5

$${\frac{{{\mathtt{r}}}^{{\mathtt{2}}{n}}}{{{\mathtt{r}}}^{\left({\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{2}}{n}\right)}}}$$

$${\frac{{{\mathtt{r}}}^{{\mathtt{4}}{n}}}{{{\mathtt{r}}}^{{\mathtt{6}}}}}$$

= $${{\mathtt{r}}}^{\left({\mathtt{4}}{n}{\mathtt{\,-\,}}{\mathtt{6}}\right)}$$

.
 Feb 24, 2015
 #2
avatar+118723 
+5
Best Answer

$$\\\frac{(r^n)^2}{r^{6-2n}}\\\\
=\frac{(r^{2n})}{r^{6-2n}}\\\\
=r^{2n-(6-2n)}\\\\
=r^{2n-6+2n)}\\\\
=r^{4n-6}\\\\$$

Melody Feb 24, 2015
 #3
avatar+118723 
0

sorry Badinage - your answer was not up yet when I started.    

 Feb 24, 2015

3 Online Users

avatar