We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
190
2
avatar

C=5/9(F−32)

The equation above shows how temperature F, measured in degrees Fahrenheit, relates to a temperature C, measured in degrees Celsius. Based on the equation, which of the following must be true? A temperature increase of 1 degree Fahrenheit is equivalent to a temperature increase of 5/9 degree Celsius. A temperature increase of 1 degree Celsius is equivalent to a temperature increase of 1.8 degrees Fahrenheit. A temperature increase of 5/9 degree Fahrenheit is equivalent to a temperature increase of 1 degree Celsius.

 

A) I only

B) II only

C) III only

D) I and II only

 May 8, 2019
edited by Guest  May 8, 2019
 #1
avatar+104882 
+2

C  =  (5/9)(F - 32)

 

 

(1) A temperature increase of 1 degree Fahrenheit is equivalent to a temperature increase of 5/9 degree Celsius.

 

(2)A temperature increase of 1 degree Celsius is equivalent to a temperature increase of 1.8 degrees Fahrenheit.

 

(3) A temperature increase of 5/9 degree Fahrenheit is equivalent to a temperature increase of 1 degree Celsius.

 

 

The slope of this linear equation  is  5/9

 

This means that  for every increase in Celsius of 5 degrees, Fahrenheit increases by 9 degrees  ⇒ (A)

 

Dividihg both quantities in A by 5......for every 1 degree increase in Celsius, Fahrenheit increases by (9/5) = 1.8 degrees

So (2)  is true

 

Next....divide both quantities in  (A) by 9    and we have that for every 5/9 of a degree change in Celsius, Fahrenheit changes by  1 degree

So ( 1) is also true

 

So... "D" is correct

 

cool cool cool

 May 8, 2019
edited by CPhill  May 9, 2019
 #2
avatar+8810 
+3

Here is another way to figure out the answer:

 

C  =  \(\frac59\)(F - 32)  =  \(\frac59\)F  -  \(\frac{160}9\)

 

When  F = 0 ,   C  =  \(\frac59\)(0)  -  \(\frac{160}9\)  =  - \(\frac{160}9\)

 

When  F = 1 ,   C  =  \(\frac59\)(1)  -  \(\frac{160}9\)  =  \(\frac59\) - \(\frac{160}9\)     Notice this value of  C  is  \(\frac59\)  more than it was when  F  was  0 .

 

When  F = 2 ,   C  =  \(\frac59\)(2)  -  \(\frac{160}9\)  =  \(\frac59\) + \(\frac59\) - \(\frac{160}9\)     Notice this value of  C  is  \(\frac59\)  more than the previous.

 

So a temperature increase of 1 degree Fahrenheit is equivalent to a temperature increase of 5/9 degree Celsius.

 

C  =  \(\frac59\)(F - 32)

 

\(\frac95\)C  =  F - 32

 

\(\frac95\)C + 32  =  F

 

When  C = 0 ,   F  =  \(\frac95\)(0) + 32  =  32

 

When  C = 1 ,   F  =  \(\frac95\)(1) + 32  =  \(\frac95\) + 32       Notice this value of  F  is  \(\frac95\)  more than the previous.

 

When  C = 2 ,   F  =  \(\frac95\)(2) + 32  =  \(\frac95\) + \(\frac95\) + 32    Notice this value of  F  is  \(\frac95\)  more than the previous.

 

So a temperature increase of  1  degree Celsius is equivalent to a temperature increase of 9/5 degrees Fahrenheit. (And  9/5 = 1.8). In other words, a temperature increase of 9/5 degrees (not 5/9 degrees) Fahrenheit is equivalent to a temperature increase of 1 degree Celsius.

 May 9, 2019
edited by hectictar  May 9, 2019

2 Online Users