+0  
 
0
365
3
avatar

the angles of a triangle are in the ratio 3:5:4 calculate the size of each angle

Guest Apr 20, 2017
 #1
avatar+20033 
+1

the angles of a triangle are in the ratio 3:5:4 calculate the size of each angle

 

\(\begin{array}{rcll} \text{Let } \alpha &=& \text{angle}_1 \\ \text{Let } \beta &=& \text{angle}_2 \\ \text{Let } \gamma &=& \text{angle}_3 \\ \gamma &=& 180^{\circ}-(\alpha+\beta) \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \alpha : \beta : \gamma \\ &=& \alpha : \beta : 180^{\circ}-(\alpha+\beta) \\ &=& 3:5:4 \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (1): & \frac{\alpha}{\beta} &=& \frac{3}{5} \\ & \alpha &=& \frac{3}{5}\cdot \beta \\\\ (2): & \frac{\alpha}{\gamma} = \frac{\alpha} { 180^{\circ}-(\alpha+\beta) } &=& \frac{3}{4} \\ & \frac{\alpha} { 180^{\circ}-(\alpha+\beta) } &=& \frac{3}{4} \\ & \frac{4}{3} \cdot \alpha &=& 180^{\circ}-(\alpha+\beta) \quad & | \quad \alpha = \frac{3}{5}\cdot \beta \\ & \frac{4}{3} \cdot \frac{3}{5}\cdot \beta &=& 180^{\circ}-(\frac{3}{5}\cdot \beta +\beta) \\ & \frac{4}{5} \cdot \beta &=& 180^{\circ}-\frac{8}{5}\cdot \beta \\ & \frac{4}{5} \cdot \beta +\frac{8}{5}\cdot \beta &=& 180^{\circ} \\ & \frac{12}{5} \cdot \beta &=& 180^{\circ} \\ & \beta &=& 180^{\circ}\cdot \frac{5}{12} \\ & \mathbf{ \beta } & \mathbf{=} & \mathbf{ 75^{\circ} } \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline & \alpha &=& \frac{3}{5}\cdot \beta \quad & | \quad \mathbf{ \beta = 75^{\circ} } \\ & \alpha &=& \frac{3}{5}\cdot 75^{\circ} \\ & \mathbf{ \alpha } & \mathbf{=} & \mathbf{ 45^{\circ} } \\ \\ & \gamma &=& 180^{\circ}-(\alpha+\beta) \quad & | \quad \mathbf{ \alpha = 45^{\circ} } \qquad \mathbf{ \beta = 75^{\circ} } \\ & \gamma &=& 180^{\circ}-( 45^{\circ}+75^{\circ} ) \\ & \gamma &=& 180^{\circ}-120^{\circ} \\ & \mathbf{ \gamma } & \mathbf{=} & \mathbf{ 60^{\circ} } \\ \hline \end{array} \)

 

The angles of the triangle are \(45^{\circ},\ 75^{\circ},\ 60^{\circ}\)

 

laugh

heureka  Apr 20, 2017
 #2
avatar+90056 
+2

 

 

3 : 4 : 5      means that there are   3 + 4 + 5   =  12 equal parts

 

And the angles of a triangle sum to 180

 

So....one of these angles  is  3/12 of this  = 3/12 * 180 =  1/4 * 180  = 45°

 

And another of the angles  is  4/12  of this =   4/12 * 180 =  1/3 * 180   = 60°

 

And the last angle must be   180  - 45  - 60   =  75°

 

 

 

cool cool cool

CPhill  Apr 20, 2017
 #3
avatar+229 
+1

I would just take the 12 parts, and divide 180 the correct amount of times. That 1st answer is over complicated. LOL!

liveevillevi  Apr 20, 2017

27 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.