(2√7)/(√3-√5)
The trick here is just to multiply by the conjugate of the denominator in both the numerator and denominator....so we have.....
[(2√7)/(√3-√5)] *[(√3+√5) / (√3+√5)] =
[2√(21) + 2√(35)] / (3-5) =
[(2)[√(21) + √(35)]] / (-2) =
-[√(21) + √(35)]
--------------------------------------------------------------------------------------------------
The next one is similar........
(4x)/(3-√6) * [ (3+√6) / (3+√6)] =
[(4x)(3+√6)]/[9 -6] =
[12x + 4x√6] / [3]
2sqrt7 / (sqrt3 - sqrt5)
(2sqrt7) / (sqrt3 - sqrt5) * [(sqrt3 + sqrt5) / (sqrt3 + sqrt5)] -->
2(sqrt(21) + sqrt(35)) / (3 - 5) -->
2(sqrt(21) + sqrt(35)) / (-2) -->
-(sqrt(21) + sqrt(35)).
4x / (3 - sqrt6)
4x / (3 - sqrt6) * [(3 + sqrt6) / (3 + sqrt6)] -->
4x(3 + sqrt6) / (9 - 6) -->
12x + 4sqrt6 / (3) -->
4x + (4/3)sqrt6.
(2√7)/(√3-√5)
The trick here is just to multiply by the conjugate of the denominator in both the numerator and denominator....so we have.....
[(2√7)/(√3-√5)] *[(√3+√5) / (√3+√5)] =
[2√(21) + 2√(35)] / (3-5) =
[(2)[√(21) + √(35)]] / (-2) =
-[√(21) + √(35)]
--------------------------------------------------------------------------------------------------
The next one is similar........
(4x)/(3-√6) * [ (3+√6) / (3+√6)] =
[(4x)(3+√6)]/[9 -6] =
[12x + 4x√6] / [3]