+0  
 
0
734
4
avatar+546 

2√7/√3-√5

 

and

 

4x/3-√6

 Jul 28, 2014

Best Answer 

 #2
avatar+129896 
+10

(2√7)/(√3-√5)

The trick here is just to multiply by the conjugate of the denominator in both the numerator and denominator....so we have.....

[(2√7)/(√3-√5)] *[(√3+√5) / (√3+√5)] =

[2√(21) + 2√(35)] / (3-5) =

[(2)[√(21) + √(35)]] / (-2)  =

-[√(21) + √(35)]

--------------------------------------------------------------------------------------------------

The next one is similar........

(4x)/(3-√6) * [ (3+√6) / (3+√6)] =

[(4x)(3+√6)]/[9 -6] =

[12x + 4x√6] / [3]

 

 Jul 28, 2014
 #1
avatar+4473 
+10

2sqrt7 / (sqrt3 - sqrt5)

(2sqrt7) / (sqrt3 - sqrt5) * [(sqrt3 + sqrt5) / (sqrt3 + sqrt5)] -->

2(sqrt(21) + sqrt(35)) / (3 - 5) -->

2(sqrt(21) + sqrt(35)) / (-2) -->

-(sqrt(21) + sqrt(35)).

 

4x / (3 - sqrt6)

4x / (3 - sqrt6) * [(3 + sqrt6) / (3 + sqrt6)] -->

4x(3 + sqrt6) / (9 - 6) -->

12x + 4sqrt6 / (3) -->

4x + (4/3)sqrt6.

 Jul 28, 2014
 #2
avatar+129896 
+10
Best Answer

(2√7)/(√3-√5)

The trick here is just to multiply by the conjugate of the denominator in both the numerator and denominator....so we have.....

[(2√7)/(√3-√5)] *[(√3+√5) / (√3+√5)] =

[2√(21) + 2√(35)] / (3-5) =

[(2)[√(21) + √(35)]] / (-2)  =

-[√(21) + √(35)]

--------------------------------------------------------------------------------------------------

The next one is similar........

(4x)/(3-√6) * [ (3+√6) / (3+√6)] =

[(4x)(3+√6)]/[9 -6] =

[12x + 4x√6] / [3]

 

CPhill Jul 28, 2014
 #3
avatar+546 
0

okay so apparently Aziz was right...

 Jul 28, 2014
 #4
avatar+129896 
0

Sorry, Nataszaa, but I believe my answer to the second one was correct......we could "simplify" it further as:

4x + (4/3)x√(6)    (I actually prefer it as a single fraction, but it's arbitrary)

(I believe Aziz forgot to distribute the x over the second term)

 

 Jul 28, 2014

3 Online Users

avatar
avatar