$$\left[{\frac{\left({{\mathtt{p}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{p}}\right)}{\left({{\mathtt{p}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{p}}{\mathtt{\,\small\textbf+\,}}{\mathtt{8}}\right)}}\right]{\mathtt{\,\times\,}}\left[{\frac{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{6}}\right)}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{p}}}^{{\mathtt{2}}}\right)}}\right]$$
$$\left[{\frac{{p}{\left({\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{4}}\right)}}{\left(\left({\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{2}}\right){\mathtt{\,\times\,}}\left({\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{4}}\right)\right)}}\right]{\mathtt{\,\times\,}}\left[{\frac{\left({\mathtt{3}}{\mathtt{\,\times\,}}\left({\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{2}}\right)\right)}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{p}}}^{{\mathtt{2}}}\right)}}\right]$$
This is how far I got with this problem, although I am not sure if it's right. Please help!