+0  
 
0
1952
2
avatar

Rewrite  2π/9  radians in degree measure ?

 Mar 14, 2015

Best Answer 

 #2
avatar
+5

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}$$ radians

 

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{180}}}{{\mathtt{\pi}}}}\right)$$

 

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{180}}}{{\mathtt{9}}}}$$

 

$${\frac{{\mathtt{360}}}{{\mathtt{9}}}}$$

 

$${\mathtt{40}}$$

 

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}$$ radians is equal to $${\mathtt{40}}$$ degrees

 Mar 14, 2015
 #1
avatar
+5

From radian to degree, you multiply by 180º/π and reduce the fraction.

From degree to radian, you multiply by π/180º nad reduce fraction.

 

In this case, (2π/9)(180º/π)= 40º.
 Mar 14, 2015
 #2
avatar
+5
Best Answer

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}$$ radians

 

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{180}}}{{\mathtt{\pi}}}}\right)$$

 

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{180}}}{{\mathtt{9}}}}$$

 

$${\frac{{\mathtt{360}}}{{\mathtt{9}}}}$$

 

$${\mathtt{40}}$$

 

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{9}}}}$$ radians is equal to $${\mathtt{40}}$$ degrees

Guest Mar 14, 2015

1 Online Users