Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
4994
5
avatar+1836 

Right ABC has AB=3, BC=4, and AC=5. Square XYZW is inscribed in ABC with X and Y on AC, W on AB, and Z on BC. What is the side length of the square?

 Nov 12, 2015

Best Answer 

 #4
avatar
+15

Using similar triangles twice, and  calling the length of the side of the square x,

in the triangle CYZ,  CY/x = 4/3, so CY = 4x/3,

in the triangle WXA,  x/XA = 3/4, so XA = 3x/4.

The hypotenuse of the triangle is

CY + YX + XA  = 4x/3 + x + 3x/4 = 37x/12 = 5,

so x = 60/37.

 Nov 13, 2015
 #1
avatar+130466 
+15

There may be other methods of solving this one.....but here's my attempt.....

 

Locate  point D  on BC and let it lie x units from the origin......and let a be the side of the square

 

Locate point E on  AC  and  F on AB  such that  DE = DF  = a   and DE,DF are perpendicular to each other

 

Now angle ACB  = angle FDB = atan(3/4)

 

 So, cos [atan(3/4)] = DB/ FD = x / a    →  x = ( a)cos[ atan(3/4)]

 

And sin ACB = sin [atan (3/4)]

 

So, sin [atan (3/4) ]  = a / [ 4 - x]

 

And substituting for x, we have

 

sin [atan(3/4)] = a / [ 4 - a* cos [atan(3/4)]]

 

And with a little help from WolframAlpha,  a = 60/37.........and this is the side  of the square

 

And x = BD = (60/37)cos[atan(3/4)] = 48/37

 

Here's the [ approximate] pic :

 

 

cool cool cool

 Nov 13, 2015
edited by CPhill  Nov 13, 2015
edited by CPhill  Nov 13, 2015
edited by CPhill  Nov 13, 2015
 #2
avatar+26396 
+15

Right ABC has AB=3, BC=4, and AC=5. Square XYZW is inscribed in ABC with X and Y on AC, W on AB, and Z on BC. What is the side length of the square?

 

XW=WZ=xu=ZBv=WB(1)vx=35v=35x(2)ux=45u=45xsin(A)=x3vsin(B)=sin(90A)=cos(A)=x4u(3)[sin(A)]2+[cos(A)]2=1=(x3v)2+(x4u)2(x3v)2+(x4u)2=1x2(3v)2+x2(4u)2=1v=35xu=45xx2(335x)2+x2(445x)2=1x232(115x)2+x242(115x)2=1x232+x242=(115x)2x232+x242=(5x)252x2(132+142)=(5x)252x2(42+323242)=(5x)252|32+42=52x2(523242)=(5x)252|5252=54x2(543242)=(5x)2x2(543242)=5225x+x2x2(543242)x2=5225xx2(5432421)=5225xx2(5432423242)=5225xx2(5432423242)+25x52=0x=b±b24ac2aa=5432423242b=25c=52x2(5432423242)+25x52=0x1,2=25±(25)24(5432423242)(52)2(5432423242)x1,2=25±2252+2252(5432423242)2(5432423242)x1,2=25±251+(5432423242)2(5432423242)x1,2=25±253242+54324232422(5432423242)x1,2=25±255432422(5432423242)x1,2=25±25(5234)2(5432423242)x1,2=10±250122(5432423242)x1,2=10±25012962144x=10+25012962144x=13012962144x=(13012)(144962)x=(13012)(122962)x=13012962x=1560962x=780481x=6037x=1.621¯621The side length of the square is 1.621¯621

laugh

 Nov 13, 2015
edited by heureka  Nov 13, 2015
edited by heureka  Nov 13, 2015
 #3
avatar+33654 
+15

"Right ABC has AB=3, BC=4, and AC=5. Square XYZW is inscribed in ABC with X and Y on AC, W on AB, and Z on BC. What is the side length of the square?"

 

square in triangle

 Nov 13, 2015
 #4
avatar
+15
Best Answer

Using similar triangles twice, and  calling the length of the side of the square x,

in the triangle CYZ,  CY/x = 4/3, so CY = 4x/3,

in the triangle WXA,  x/XA = 3/4, so XA = 3x/4.

The hypotenuse of the triangle is

CY + YX + XA  = 4x/3 + x + 3x/4 = 37x/12 = 5,

so x = 60/37.

Guest Nov 13, 2015
 #5
avatar
+10

Using similar triangles twice, and  calling the length of the side of the square x,

in the triangle CYZ,  CY/x = 4/3, so CY = 4x/3,

in the triangle WXA,  x/XA = 3/4, so XA = 3x/4.

The hypotenuse of the triangle is

CY + YX + XA  = 4x/3 + x + 3x/4 = 37x/12 = 5,

so x = 60/37.

 

 

Irritating, Alan's solution appeared during the time I was typing mine in.

 Nov 13, 2015

1 Online Users

avatar