+0  
 
0
957
2
avatar

Given a right triangle, use the Pythagorean Theorem to find "a" (one of the legs) when c = 85 and b = 53.  (Round your answer to the nearest tenth.)

 Aug 4, 2014

Best Answer 

 #2
avatar+26400 
+5

$$c^2=a^2+b^2\\\\
\Rightarrow a^2 = c^2 -b^2 = (c-b)(c+b)=(85-53)(85+53)=32*138\\
=16*2*2*69\\\\
a=\sqrt{16*4*69}=\sqrt{16}\sqrt{4}\sqrt{69}=4*2*\sqrt{69}=8\sqrt{69}\approx66.5$$

.
 Aug 5, 2014
 #1
avatar+130511 
+5

The other leg is found by taking the square root of the difference between the hypoteneuse squared and the other leg squared......i.e, ........

√(852 - 532)  ≈ 66.5  ......rounded to the nearest tenth....

And that's it!!!

 

 Aug 4, 2014
 #2
avatar+26400 
+5
Best Answer

$$c^2=a^2+b^2\\\\
\Rightarrow a^2 = c^2 -b^2 = (c-b)(c+b)=(85-53)(85+53)=32*138\\
=16*2*2*69\\\\
a=\sqrt{16*4*69}=\sqrt{16}\sqrt{4}\sqrt{69}=4*2*\sqrt{69}=8\sqrt{69}\approx66.5$$

heureka Aug 5, 2014

0 Online Users