+0  
 
0
78
1
avatar

A right triangle has legs of length 6 and b, and a hypotenuse of length c. The perimeter of the triangle is \(24\). Compute c.

 Apr 29, 2022

Best Answer 

 #1
avatar+2455 
+1

We have the following system:

 

\(6+b+c=24\)       (1)

\(36+b^2=c^2\)             (2)

 

Solve for \(c\) in the first equation: \(c=18-b\)

 

Squaring this gives \(b^2-36b+324\)

 

Substituting this in (2) gives: \(36+b^2=b^2-36b+324\)

 

Solving, we find that \(b= 8\)

 

Subsituting this in to (1), we find that \(\color{brown}\boxed{c = 10}\)

 Apr 29, 2022
edited by BuilderBoi  Apr 29, 2022
 #1
avatar+2455 
+1
Best Answer

We have the following system:

 

\(6+b+c=24\)       (1)

\(36+b^2=c^2\)             (2)

 

Solve for \(c\) in the first equation: \(c=18-b\)

 

Squaring this gives \(b^2-36b+324\)

 

Substituting this in (2) gives: \(36+b^2=b^2-36b+324\)

 

Solving, we find that \(b= 8\)

 

Subsituting this in to (1), we find that \(\color{brown}\boxed{c = 10}\)

BuilderBoi Apr 29, 2022
edited by BuilderBoi  Apr 29, 2022

25 Online Users

avatar