+0  
 
0
1027
3
avatar

sasha and maurice are lab partners in science class. Today they need to weigh liquids using a balance scale. They have a tray full of 80 weights that they can use. The weights are of four different kinds: 50 grams, 25 grams, 15 grams, and 5 grams. The first liquid weihts 85 grams. How many different combinations of weights will balance the scale for the first liquid?

 Jan 15, 2015

Best Answer 

 #3
avatar+26400 
+5

$$\small{
\begin{array}{rrrrrrr}
1.& 85g =& & 4 \times 15g &+ 1 \times 25g& \\
2.& 85g =& 1 \times 5g &+ 2 \times 15g & & + 1 \times 50g\\
3.& 85g =& 1 \times 5g &+ 2 \times 15g & + 2 \times 25g \\
4.& 85g =& 2 \times 5g & & + 1 \times 25g & + 1 \times 50g\\
5.& 85g =& 2 \times 5g & & + 3 \times 25g \\
6.& 85g =& 2 \times 5g &+ 5 \times 15g \\
7.& 85g =& 3 \times 5g &+ 3 \times 15g & + 1 \times 25g \\
8.& 85g =& 4 \times 5g &+ 1 \times 15g & & + 1 \times 50g\\
9.& 85g =& 4 \times 5g &+ 1 \times 15g & + 2 \times 25g \\
10.& 85g =& 5 \times 5g &+ 4 \times 15g \\
11.& 85g =& 6 \times 5g &+ 2 \times 15g & + 1 \times 25g \\
12.& 85g =& 7 \times 5g & & & + 1 \times 50g \\
13.& 85g =& 7 \times 5g & & + 2 \times 25g \\
14.& 85g =& 8 \times 5g &+ 3 \times 15g \\
15.& 85g =& 9 \times 5g &+ 1 \times 15g & + 1 \times 25g \\
16.& 85g =& 11 \times 5g &+ 2 \times 15g \\
17.& 85g =& 12 \times 5g & & + 1 \times 25g \\
18.& 85g =& 14 \times 5g &+ 1 \times 15g \\
19.& 85g =& 17 \times 5g \\
\end{array}
}$$

.
 Jan 15, 2015
 #1
avatar+23254 
+5

There are many possibilities (provided they have enough weights of each size). I'll let you figure out the number of 5 gram weights needed in each possibility:

50 gm     25 gm    15 gm     5 gm

   1             1                         ?

   1                           1           ?

   1                           2           ?

   1                                        ?

                   3                        ?

                   2                        ?

                   2           1            ?

                   1           1            ?

                   1           2            ?

                   1           3            ?

                   1           4            ?

                                1            ?

                                2            ?

                                3            ?

                                4            ?

                                5            ?

                                              ?

 Jan 15, 2015
 #2
avatar+130511 
+5

Assuming that we have 20 weights of each type

5 , 15,  25, 50

Here are all the combinations

(1 x 50) + (7 x 5)          (4 x 15) + (5 x 5)         (1 x 50) + (1 x 25) + (2 x 5)

(1 x 25) + (4 x 15)        (3 x 15) + (8 x 5)         (1 x 50) + (1 x 15) + (4 x 5)

(1 x 25) + (12 x 5)        (2 x 15) + (11 x 5)        (1 x 50) + (2 x 15) + (1 x 5)

(2 x 25) + (7 x 5)          (1 x 15) + (14 x 5)        (2 x 25) + (2 x 15) + (1 x 5)

(3 x 25) + (2 x 5)          (17 x 5)                        (2 x 25) + (1 x 15) + (4 x 5)

(5 x 15) + (2 x 5)                                              (1 x 25) + (3 x 15) + (3 x 5)

                                                                        (1 x 25) + (2 x 15) + (6 x 5)

                                                                        (1 x 25) + (1 x 15) + (9 x 5)

 

I think that's it.......   

 

 

                                       

 Jan 15, 2015
 #3
avatar+26400 
+5
Best Answer

$$\small{
\begin{array}{rrrrrrr}
1.& 85g =& & 4 \times 15g &+ 1 \times 25g& \\
2.& 85g =& 1 \times 5g &+ 2 \times 15g & & + 1 \times 50g\\
3.& 85g =& 1 \times 5g &+ 2 \times 15g & + 2 \times 25g \\
4.& 85g =& 2 \times 5g & & + 1 \times 25g & + 1 \times 50g\\
5.& 85g =& 2 \times 5g & & + 3 \times 25g \\
6.& 85g =& 2 \times 5g &+ 5 \times 15g \\
7.& 85g =& 3 \times 5g &+ 3 \times 15g & + 1 \times 25g \\
8.& 85g =& 4 \times 5g &+ 1 \times 15g & & + 1 \times 50g\\
9.& 85g =& 4 \times 5g &+ 1 \times 15g & + 2 \times 25g \\
10.& 85g =& 5 \times 5g &+ 4 \times 15g \\
11.& 85g =& 6 \times 5g &+ 2 \times 15g & + 1 \times 25g \\
12.& 85g =& 7 \times 5g & & & + 1 \times 50g \\
13.& 85g =& 7 \times 5g & & + 2 \times 25g \\
14.& 85g =& 8 \times 5g &+ 3 \times 15g \\
15.& 85g =& 9 \times 5g &+ 1 \times 15g & + 1 \times 25g \\
16.& 85g =& 11 \times 5g &+ 2 \times 15g \\
17.& 85g =& 12 \times 5g & & + 1 \times 25g \\
18.& 85g =& 14 \times 5g &+ 1 \times 15g \\
19.& 85g =& 17 \times 5g \\
\end{array}
}$$

heureka Jan 15, 2015

0 Online Users