sasha and maurice are lab partners in science class. Today they need to weigh liquids using a balance scale. They have a tray full of 80 weights that they can use. The weights are of four different kinds: 50 grams, 25 grams, 15 grams, and 5 grams. The first liquid weihts 85 grams. How many different combinations of weights will balance the scale for the first liquid?
$$\small{
\begin{array}{rrrrrrr}
1.& 85g =& & 4 \times 15g &+ 1 \times 25g& \\
2.& 85g =& 1 \times 5g &+ 2 \times 15g & & + 1 \times 50g\\
3.& 85g =& 1 \times 5g &+ 2 \times 15g & + 2 \times 25g \\
4.& 85g =& 2 \times 5g & & + 1 \times 25g & + 1 \times 50g\\
5.& 85g =& 2 \times 5g & & + 3 \times 25g \\
6.& 85g =& 2 \times 5g &+ 5 \times 15g \\
7.& 85g =& 3 \times 5g &+ 3 \times 15g & + 1 \times 25g \\
8.& 85g =& 4 \times 5g &+ 1 \times 15g & & + 1 \times 50g\\
9.& 85g =& 4 \times 5g &+ 1 \times 15g & + 2 \times 25g \\
10.& 85g =& 5 \times 5g &+ 4 \times 15g \\
11.& 85g =& 6 \times 5g &+ 2 \times 15g & + 1 \times 25g \\
12.& 85g =& 7 \times 5g & & & + 1 \times 50g \\
13.& 85g =& 7 \times 5g & & + 2 \times 25g \\
14.& 85g =& 8 \times 5g &+ 3 \times 15g \\
15.& 85g =& 9 \times 5g &+ 1 \times 15g & + 1 \times 25g \\
16.& 85g =& 11 \times 5g &+ 2 \times 15g \\
17.& 85g =& 12 \times 5g & & + 1 \times 25g \\
18.& 85g =& 14 \times 5g &+ 1 \times 15g \\
19.& 85g =& 17 \times 5g \\
\end{array}
}$$
There are many possibilities (provided they have enough weights of each size). I'll let you figure out the number of 5 gram weights needed in each possibility:
50 gm 25 gm 15 gm 5 gm
1 1 ?
1 1 ?
1 2 ?
1 ?
3 ?
2 ?
2 1 ?
1 1 ?
1 2 ?
1 3 ?
1 4 ?
1 ?
2 ?
3 ?
4 ?
5 ?
?
Assuming that we have 20 weights of each type
5 , 15, 25, 50
Here are all the combinations
(1 x 50) + (7 x 5) (4 x 15) + (5 x 5) (1 x 50) + (1 x 25) + (2 x 5)
(1 x 25) + (4 x 15) (3 x 15) + (8 x 5) (1 x 50) + (1 x 15) + (4 x 5)
(1 x 25) + (12 x 5) (2 x 15) + (11 x 5) (1 x 50) + (2 x 15) + (1 x 5)
(2 x 25) + (7 x 5) (1 x 15) + (14 x 5) (2 x 25) + (2 x 15) + (1 x 5)
(3 x 25) + (2 x 5) (17 x 5) (2 x 25) + (1 x 15) + (4 x 5)
(5 x 15) + (2 x 5) (1 x 25) + (3 x 15) + (3 x 5)
(1 x 25) + (2 x 15) + (6 x 5)
(1 x 25) + (1 x 15) + (9 x 5)
I think that's it.......
$$\small{
\begin{array}{rrrrrrr}
1.& 85g =& & 4 \times 15g &+ 1 \times 25g& \\
2.& 85g =& 1 \times 5g &+ 2 \times 15g & & + 1 \times 50g\\
3.& 85g =& 1 \times 5g &+ 2 \times 15g & + 2 \times 25g \\
4.& 85g =& 2 \times 5g & & + 1 \times 25g & + 1 \times 50g\\
5.& 85g =& 2 \times 5g & & + 3 \times 25g \\
6.& 85g =& 2 \times 5g &+ 5 \times 15g \\
7.& 85g =& 3 \times 5g &+ 3 \times 15g & + 1 \times 25g \\
8.& 85g =& 4 \times 5g &+ 1 \times 15g & & + 1 \times 50g\\
9.& 85g =& 4 \times 5g &+ 1 \times 15g & + 2 \times 25g \\
10.& 85g =& 5 \times 5g &+ 4 \times 15g \\
11.& 85g =& 6 \times 5g &+ 2 \times 15g & + 1 \times 25g \\
12.& 85g =& 7 \times 5g & & & + 1 \times 50g \\
13.& 85g =& 7 \times 5g & & + 2 \times 25g \\
14.& 85g =& 8 \times 5g &+ 3 \times 15g \\
15.& 85g =& 9 \times 5g &+ 1 \times 15g & + 1 \times 25g \\
16.& 85g =& 11 \times 5g &+ 2 \times 15g \\
17.& 85g =& 12 \times 5g & & + 1 \times 25g \\
18.& 85g =& 14 \times 5g &+ 1 \times 15g \\
19.& 85g =& 17 \times 5g \\
\end{array}
}$$