sec[tan^-1(5/6)]
you should draw a right angled triangle to help 'see' what I say, let $$\theta$$ be one of the acute angles.
Let $$\theta = tan^{-1}(5/6)$$
$$tan\theta=\frac{opp}{adj}=\frac{5}{6}$$
If the opp is 5 and the adj is 6 then hypotenuse is $$\sqrt{25+36}=\sqrt{61}$$
$$\\sec\theta = \frac{hyp}{adj}=\frac{\sqrt{61}}{6}\\\\
$therefore$\\\\
sec[tan^{-1}(5/6)]=\frac{\sqrt{61}}{6}\\\\$$
sec[tan^-1(5/6)]
you should draw a right angled triangle to help 'see' what I say, let $$\theta$$ be one of the acute angles.
Let $$\theta = tan^{-1}(5/6)$$
$$tan\theta=\frac{opp}{adj}=\frac{5}{6}$$
If the opp is 5 and the adj is 6 then hypotenuse is $$\sqrt{25+36}=\sqrt{61}$$
$$\\sec\theta = \frac{hyp}{adj}=\frac{\sqrt{61}}{6}\\\\
$therefore$\\\\
sec[tan^{-1}(5/6)]=\frac{\sqrt{61}}{6}\\\\$$