+0  
 
0
977
1
avatar

sec[tan^-1(5/6)]

 Apr 10, 2015

Best Answer 

 #1
avatar+118724 
+5

sec[tan^-1(5/6)]

you should draw a right angled triangle to help 'see' what I say, let $$\theta$$ be one of the acute angles.

 

Let       $$\theta = tan^{-1}(5/6)$$

 

$$tan\theta=\frac{opp}{adj}=\frac{5}{6}$$

 

If the opp is 5 and the adj is 6 then hypotenuse is    $$\sqrt{25+36}=\sqrt{61}$$

 

$$\\sec\theta = \frac{hyp}{adj}=\frac{\sqrt{61}}{6}\\\\
$therefore$\\\\
sec[tan^{-1}(5/6)]=\frac{\sqrt{61}}{6}\\\\$$

 Apr 10, 2015
 #1
avatar+118724 
+5
Best Answer

sec[tan^-1(5/6)]

you should draw a right angled triangle to help 'see' what I say, let $$\theta$$ be one of the acute angles.

 

Let       $$\theta = tan^{-1}(5/6)$$

 

$$tan\theta=\frac{opp}{adj}=\frac{5}{6}$$

 

If the opp is 5 and the adj is 6 then hypotenuse is    $$\sqrt{25+36}=\sqrt{61}$$

 

$$\\sec\theta = \frac{hyp}{adj}=\frac{\sqrt{61}}{6}\\\\
$therefore$\\\\
sec[tan^{-1}(5/6)]=\frac{\sqrt{61}}{6}\\\\$$

Melody Apr 10, 2015

0 Online Users