+0  
 
0
83
1
avatar

What are the next 3 terms of this sequence: 1, 2, 3, 8, 15, 48, 105, 384, 945, 3 840..........etc. Thank you very much for help.

Guest Sep 20, 2018
edited by Guest  Sep 20, 2018

Best Answer 

 #1
avatar+20025 
+2

What are the next 3 terms of this sequence:

1, 2, 3, 8, 15, 48, 105, 384, 945, 3 840..........etc.

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{Sequence:} }&& \mathbf{1,\ 2,\ 3,\ 8,\ 15,\ 48,\ 105,\ 384,\ 945,\ 3840, \ldots} \\ \\ a_1 &=& 1 \\ a_2 &=& 2 \\ a_3 &=& 3 \\ a_4 &=& 8 \\ a_5 &=& 15 \\ a_6 &=& 48 \\ a_7 &=& 105 \\ a_8 &=& 384 \\ a_9 &=& 945 \\ a_{10} &=& 3840 \\ \ldots \\ \mathbf{a_{n} }&\mathbf{=}& \mathbf{n!!} \\ \\ \hline \\ a_{11} &=& 11!! \\ \mathbf{a_{11}} &\mathbf{=}& \mathbf{10395} \\\\ a_{12} &=& 12!! \\ \mathbf{a_{12}} &\mathbf{=}& \mathbf{46080} \\\\ a_{13} &=& 13!! \\ \mathbf{a_{13}} &\mathbf{=}& \mathbf{135135} \\ \hline \end{array}\)

 

Formula \(n!!\):

\(\large{ \begin{equation} n!! = \begin{cases} 2\cdot 4\cdot 6\cdot \ldots \cdot (n-4)\cdot (n-2)\cdot n \text{,} & \text{if } \ n \ \text{ is even} \\ 1\cdot 3\cdot 5\cdot \ldots \cdot (n-4)\cdot (n-2)\cdot n \text{,} & \text{if } \ n \ \text{ is odd} \\ \end{cases} \end{equation} }\)

 

Example:

\(\begin{array}{|rcll|} \hline 0!! &=& 1 \\ (-1)!! &=& 1 \\ 9!! &=& 1\cdot 3 \cdot 5 \cdot 9 \\ 10!! &=& 2\cdot 4 \cdot 6 \cdot 8 \cdot 10 \\ 19!! &=& 1\cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19 \\ 20!! &=& 2\cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 16 \cdot 18 \cdot 20 \\ \hline \end{array}\)

 

laugh

heureka  Sep 20, 2018
edited by heureka  Sep 20, 2018
edited by heureka  Sep 21, 2018
 #1
avatar+20025 
+2
Best Answer

What are the next 3 terms of this sequence:

1, 2, 3, 8, 15, 48, 105, 384, 945, 3 840..........etc.

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{Sequence:} }&& \mathbf{1,\ 2,\ 3,\ 8,\ 15,\ 48,\ 105,\ 384,\ 945,\ 3840, \ldots} \\ \\ a_1 &=& 1 \\ a_2 &=& 2 \\ a_3 &=& 3 \\ a_4 &=& 8 \\ a_5 &=& 15 \\ a_6 &=& 48 \\ a_7 &=& 105 \\ a_8 &=& 384 \\ a_9 &=& 945 \\ a_{10} &=& 3840 \\ \ldots \\ \mathbf{a_{n} }&\mathbf{=}& \mathbf{n!!} \\ \\ \hline \\ a_{11} &=& 11!! \\ \mathbf{a_{11}} &\mathbf{=}& \mathbf{10395} \\\\ a_{12} &=& 12!! \\ \mathbf{a_{12}} &\mathbf{=}& \mathbf{46080} \\\\ a_{13} &=& 13!! \\ \mathbf{a_{13}} &\mathbf{=}& \mathbf{135135} \\ \hline \end{array}\)

 

Formula \(n!!\):

\(\large{ \begin{equation} n!! = \begin{cases} 2\cdot 4\cdot 6\cdot \ldots \cdot (n-4)\cdot (n-2)\cdot n \text{,} & \text{if } \ n \ \text{ is even} \\ 1\cdot 3\cdot 5\cdot \ldots \cdot (n-4)\cdot (n-2)\cdot n \text{,} & \text{if } \ n \ \text{ is odd} \\ \end{cases} \end{equation} }\)

 

Example:

\(\begin{array}{|rcll|} \hline 0!! &=& 1 \\ (-1)!! &=& 1 \\ 9!! &=& 1\cdot 3 \cdot 5 \cdot 9 \\ 10!! &=& 2\cdot 4 \cdot 6 \cdot 8 \cdot 10 \\ 19!! &=& 1\cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19 \\ 20!! &=& 2\cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 16 \cdot 18 \cdot 20 \\ \hline \end{array}\)

 

laugh

heureka  Sep 20, 2018
edited by heureka  Sep 20, 2018
edited by heureka  Sep 21, 2018

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.