Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1896
4
avatar

What is the sum of this sequence?
1000^2 + 999^2 - 998^2 - 997^2 +996^2 + 995^2 - .........+ 4^2 + 3^2 - 2^2 - 1^2. Any help would be great. Thank you.

 Mar 24, 2019
 #1
avatar+150 
+2

Let's do this a different way! 
Group the terms in pairs. 
1000² - 999² = (1000+999)(1000-999) = 1999. 
998² - 997² = (998 + 997)(998-997) = 1995. 



2²-1² = (2+1)(2-1) = 3. 

So we have to sum the arithmetic progression 
3 + 7 + ... + (4n-1) 
to 500 terms, since 1999 is the 500th term of 
this progression. 
So, how do we do this? 
Note that 
3 + 1999 = 2002 
7 + 1995 = 2002 
11 + 1991 = 2002 



1999 + 3 = 2002 
Call the sum of each column S 
Then S + S = 500*2002 
S = 500*1001 = 500500.

 Mar 24, 2019
 #2
avatar
+2

1000^2 + 999^2 - 998^2 - 997^2..........etc.

Why did you subtract the first 2 terms?

 

Every 4 terms form an arithmetic sequence as follows:
7,988, 7,956, 7,924, 7,892........etc., where:
First term =7,988
Common difference = - 32
Number of terms =1,000 / 4 = 250
SUM = N/2 * [2*F + (N - 1)* D]
         =250/2*[2*7,988 + (250 - 1) * - 32]
         =125 * [15,976 + (249 * - 32)]
         =125 * [15,976 - 7,968]
         =125 * [8,008]
         = 1,001,000

 Mar 24, 2019
 #3
avatar
+1

∑[- 4(8n - 2005), n, 1, 250] = 1,001,000

 Mar 24, 2019
 #4
avatar+26396 
+3

What is the sum of this sequence?
1000^2 + 999^2 - 998^2 - 997^2 +996^2 + 995^2 - .........+ 4^2 + 3^2 - 2^2 - 1^2.

 

10002+999299829972+9962+9952+42+322212=250k=1((4k)2+(4k1)2(4k2)2(4k3)2)=250k=1(16k2+16k28k+116k2+16k416k2+24k9)=250k=1(8k+1+16k4+24k9)=250k=1(32k12)=250k=132k250k=112=32250k=1k12250=32(1+2502)25012250=1625125012250=250(1625112)=2504004=1001000

 

laugh

 Mar 25, 2019

3 Online Users

avatar
avatar