Given a_0 = 1 and a_1 = 5 and the general relation a_n^2 - a_{n + 1} = (-1)^n for n >= 1 find a_3
This is true: \(a_n^2 - a_{n + 1} = (-1)^n\)
And we have \(a_1 = 5\)
So this must be true: \(5^2-a_2=(-1)^1\), or \(26 = a_2\).
Similar logic:
\(26^2-a_3=(-1)^2\)
\(\fbox{$a_3=675$}\)