+0  
 
0
1027
2
avatar

The sum of the first two five terms of a geometric series is 3798 and the sum to infinity is 4374. Find the sum of the first seven terms.?

 Sep 27, 2015
 #1
avatar+130516 
0

The sum of the first two five terms of a geometric series is 3798

 

Which is it???...two, five  [or maybe twenty five  ???]

 

 

cool cool cool

 Sep 27, 2015
 #2
avatar+23254 
+5

If you assume that the word "two" is a typo, and have the problem that the sum of the first five terms is 3798 while the sum to infinity is 4374:

The formula for the sum of the first five terms of a geometric series is:  Sum = a(r5 - 1) / (r - 1).

The formula for the sum of an infinite geometric series is:  InfSum  = a/(1 - r)  with |r| < 1.

We have:  a(r5 - 1) / (r - 1)  =  3798     and     a/(1 - r)  =  4374

Since  a/(1 - r)  =  4374  --->   a/(r - 1)  =  -4374

Since  a(r5 - 1) / (r - 1)  =  3798   --->   [1/(r - 1)] x (r5 - 1)  =  3798   --->   -4374 x (r5 - 1)  =  3798

   --->   r5 - 1  =  -3798/4374   --->   r5  =  1 - 3798/4374   --->   r5  =  576/4374  =  32/243   --->   r  =  2/3

 

Knowing that r = 2/3:     a/(1 - r)  =  4374   --->   a/(1 - 2/3)  =  4374   --->   a/(1/3)  =  4374   --->   a  =  1458

 

To find the sum of the first seven terms:  Sum = a(r7 - 1) / (r - 1)   =  1458( (2/3)7 - 1 ) / ( 2/3 - 1 )  =  4188

 Sep 27, 2015

1 Online Users