+0

# shapes and angle

0
408
2

http://www.mathsgenie.co.uk/papers/EDEXCELS22H.pdf

Guest Jun 18, 2017
edited by Guest  Jun 18, 2017
Sort:

#1
+6591
+2

Given that

2x−1 : x−4  =  16x+1 : 2x−1

find the possible values of x.

(We can see that   x ≠ 4    and    x ≠ 1/2   , because those values cause a zero in the denominator.)

$$\frac{2x-1}{x-4}=\frac{16x+1}{2x-1}$$                                                   Cross multilpy.

$$(2x-1)(2x-1)=(16x+1)(x-4)$$

$$4x^2-4x+1=16x^2-63x-4$$                 Subtract  4x2  from both sides of the equation.

$$-4x+1=12x^2-63x-4$$                          Add  4x  to both sides of the equation.

$$1=12x^2-59x-4$$                                       Subtract  1  from both sides of the equation.

$$0=12x^2-59x-5$$                                       Use the quadratic formula to solve for  x  .

$$x = {59 \pm \sqrt{(-59)^2-4(12)(-5)} \over 2(12)} \\~\\ x = {59 \pm 61 \over 24} \\~\\ x=5\qquad\text{and}\qquad x=-\frac1{12}$$

Also..I did work on the question 20 at first if you need help on that one...I had a whole answer ready for it then I saw you changed it! Haha

hectictar  Jun 18, 2017
edited by Guest  Jun 18, 2017
#2
+84239
+2

2x -1 :  x  - 4  =  16x  + 1 : 2x -1

So....we can write this as

[ 2x - 1 ] / [x - 4 ]  = [ 16x + 1 ] / [2x -1]       cross-multiply

[2x -1 ] [2x -1 ]  = [x - 4] [ 16x + 1 ]   simplify

4x^2  - 4x  + 1   = 16x^2 - 64x  + x - 4

4x^2 - 4x + 1  = 16x^2 -63x - 4       subtract the left side from the right

12x^2  - 59x - 5  = 0       factor

(12x + 1) ( x - 5 )  = 0

Set both factors to 0 and solve.....and x = -1/12      or  x  = 5

CPhill  Jun 18, 2017

### 32 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details