+0  
 
+5
851
2
avatar

Show me an example of a fraction which has a recurring decimal equivalent with two different digits repeating?

 May 6, 2015

Best Answer 

 #2
avatar
+10

You can also "create" an own fraction.

For example, if you want to find the fraction to 0.121212121212...

Call 0,121212121212... for x

100x=12,1212121212...

100x-x=12

99x=12

x=12/99

Hope you can use this!

 May 6, 2015
 #1
avatar+33666 
+10

12/99

 

$${\frac{{\mathtt{12}}}{{\mathtt{99}}}} = {\frac{{\mathtt{4}}}{{\mathtt{33}}}} = {\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$......

 

13/99

$${\frac{{\mathtt{13}}}{{\mathtt{99}}}} = {\mathtt{0.131\: \!313\: \!131\: \!313\: \!131\: \!3}}$$.....

 

.

 May 6, 2015
 #2
avatar
+10
Best Answer

You can also "create" an own fraction.

For example, if you want to find the fraction to 0.121212121212...

Call 0,121212121212... for x

100x=12,1212121212...

100x-x=12

99x=12

x=12/99

Hope you can use this!

Guest May 6, 2015

1 Online Users