show that 2cos(2x) - cos^2(x) = 1 -3sin^2(x)
Hence solve the equation 2cos(2x) - cos^2(x) = 2sin(x)
Verify the following identity:
2 cos(2 x)-cos(x)^2 = 1-3 sin(x)^2
cos(x)^2 = 1-sin(x)^2:
2 cos(2 x)-1-sin(x)^2 = ^?1-3 sin(x)^2
cos(2 x) = 1-2 sin(x)^2:
2 1-2 sin(x)^2-(1-sin(x)^2) = ^?1-3 sin(x)^2
-(1-sin(x)^2) = sin(x)^2-1:
sin(x)^2-1+2 (1-2 sin(x)^2) = ^?1-3 sin(x)^2
2 (1-2 sin(x)^2) = 2-4 sin(x)^2:
-1+sin(x)^2+2-4 sin(x)^2 = ^?1-3 sin(x)^2
-1+sin(x)^2+2-4 sin(x)^2 = 1-3 sin(x)^2:
1-3 sin(x)^2 = ^?1-3 sin(x)^2
The left hand side and right hand side are identical:
Answer: | identity has been verified)
Verify the following identity:
2 cos(2 x)-cos(x)^2 = 1-3 sin(x)^2
cos(x)^2 = 1-sin(x)^2:
2 cos(2 x)-1-sin(x)^2 = ^?1-3 sin(x)^2
cos(2 x) = 1-2 sin(x)^2:
2 1-2 sin(x)^2-(1-sin(x)^2) = ^?1-3 sin(x)^2
-(1-sin(x)^2) = sin(x)^2-1:
sin(x)^2-1+2 (1-2 sin(x)^2) = ^?1-3 sin(x)^2
2 (1-2 sin(x)^2) = 2-4 sin(x)^2:
-1+sin(x)^2+2-4 sin(x)^2 = ^?1-3 sin(x)^2
-1+sin(x)^2+2-4 sin(x)^2 = 1-3 sin(x)^2:
1-3 sin(x)^2 = ^?1-3 sin(x)^2
The left hand side and right hand side are identical:
Answer: | identity has been verified)
Here's another method :
2cos(2x) - cos^2(x) = 1 -3sin^2(x) break up -3sin^2(x) into -2sin^2x - sin^2(x)
2cos(2x) - cos^2(x) = 1 - 2sin^2(x) -sin^2(x) rearrange the right side
2cos(2x) - cos^2x = 1 - sin^2(x) - 2sin^2(x)
2cos(2x) - cos^2(x) = cos^2(x) - 2sin^2(x) add cos^2(x) to both sides
2cos(2x) = 2cos^2(x) - 2sin^2(x) divide through by 2
cos(2x) = cos^2(x) - sin^2(x) which is a basic identity