How about this :/
\(let\\ \begin{align} x&=ln\; i\\ e^x&=i\\now\\ i&=cos\frac{\pi}{2}+isin\frac{\pi}{2}\\\therefore\\ i&=e^{(\pi/2)i}\\\therefore \\ e^x&=e^{(\pi/2)i}\\\therefore\\ x&=\frac{\pi }{2}\;i \\\therefore\\ ln\;i&=\frac{\sqrt{-\pi^2}}{2} \end{align} \)