We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Similar Triangles

0
358
1

Triangle $$ABC$$ has a right angle at $$B$$. Legs $$\overline{AB}$$ and $$\overline{CB}$$ are extended past point $$B$$ to points $$D$$ and $$E$$, respectively, such that $$\angle{EAC}=\angle{ACD}=90^\circ$$. Prove that $$EB\cdot BD=AB\cdot BC$$.

Aug 30, 2017

### Best Answer

#1
+1

Since ABC  is a right angle, then DBC is supplemental.....so it's = 90°as well

Snd EA is parallel to DC......and since transversal EC  cuts these, then angle DCE and angle CEA form equal alternate interior angles

Thus by angle - angle congruency......triangle CBD  is similar to triangle EBA

Thus BC / BD  =  BE / BA

So  BC * BA  =  BE * BD    or, put another way

AB * BC  =  EB * BD

Here's a pic :    Aug 30, 2017

### 1+0 Answers

#1
+1
Best Answer

Since ABC  is a right angle, then DBC is supplemental.....so it's = 90°as well

Snd EA is parallel to DC......and since transversal EC  cuts these, then angle DCE and angle CEA form equal alternate interior angles

Thus by angle - angle congruency......triangle CBD  is similar to triangle EBA

Thus BC / BD  =  BE / BA

So  BC * BA  =  BE * BD    or, put another way

AB * BC  =  EB * BD

Here's a pic :    CPhill Aug 30, 2017