+0

# Similar Triangles

0
149
1
+95

Triangle $$ABC$$ has a right angle at $$B$$. Legs $$\overline{AB}$$ and $$\overline{CB}$$ are extended past point $$B$$ to points $$D$$ and $$E$$, respectively, such that $$\angle{EAC}=\angle{ACD}=90^\circ$$. Prove that $$EB\cdot BD=AB\cdot BC$$.

benjamingu22  Aug 30, 2017

#1
+85610
+1

Since ABC  is a right angle, then DBC is supplemental.....so it's = 90°as well

Snd EA is parallel to DC......and since transversal EC  cuts these, then angle DCE and angle CEA form equal alternate interior angles

Thus by angle - angle congruency......triangle CBD  is similar to triangle EBA

Thus BC / BD  =  BE / BA

So  BC * BA  =  BE * BD    or, put another way

AB * BC  =  EB * BD

Here's a pic :

CPhill  Aug 30, 2017
Sort:

#1
+85610
+1

Since ABC  is a right angle, then DBC is supplemental.....so it's = 90°as well

Snd EA is parallel to DC......and since transversal EC  cuts these, then angle DCE and angle CEA form equal alternate interior angles

Thus by angle - angle congruency......triangle CBD  is similar to triangle EBA

Thus BC / BD  =  BE / BA

So  BC * BA  =  BE * BD    or, put another way

AB * BC  =  EB * BD

Here's a pic :

CPhill  Aug 30, 2017

### 31 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details