+0  
 
+1
342
3
avatar+280 

this is the second answer i got 

16.865987621884, is it correct. i cant afford to keep puttin in wrong answers. If its the answer then i know what im doing now.

Veteran  Mar 19, 2017
 #1
avatar+280 
0

here is another answer i got 

156.161259816828

Veteran  Mar 19, 2017
 #2
avatar+88871 
+5

u = < - 2, 8 >

v = < -7, - 9 >

 

cos (theta)   =   u (dot) v / [ ll u ll * ll v ll ]

 

u (dot) v   =   14 - 72  =   -58

 

ll u ll  =   sqrt [ (-2)^2 + (8)^2 ]  =  sqrt (68)

 

ll v ll   =   sqrt [ (-7)^2 + (-9)^2 ]   =  sqrt [ 49 + 81]   =  sqrt (130)

 

cos (theta)   =   -58 / [ sqrt (68) * sqrt (130) ]

 

arcos  [ -58 / [ sqrt (68) * sqrt (130) ] ]   = theta   ≈ 128.0888°

 

Here is a graph that shows this, Veteran :

 

 

 

 

cool cool cool

CPhill  Mar 19, 2017
 #3
avatar+20009 
0

Find the angle between the vectors. State your answer in degrees,

rounded to at least four decimal places.

 

 

\(\vec{u} = \binom{-2}{8} \\ \vec{v} = \binom{-7}{-9} \\\)

\(\begin{array}{|rcll|} \hline \tan(\theta) &=& \frac{|~\vec{u} \times \vec{v}~| } {\vec{u} \cdot \vec{v} } \\ &=& \frac{ \left|~\binom{-2}{8} \times \binom{-7}{-9}~\right| } {\binom{-2}{8} \cdot \binom{-7}{-9} } \\ &=& \frac{ (-2)\cdot (-9) - (8)\cdot (-7) } { (-2)\cdot (-7) + (8)\cdot (-9) } \\ &=& \frac{ 18+56 } { 14-72 } \\ &=& \frac{ 74 } { -58 } \quad & | \quad II.\text{Quadrant} \\ &=& \frac{ 37 } { -29 } \\ \theta &=& \arctan(\frac{ 37 } { -29 }) \\ \theta &=& \arctan(-1.27586206897) \\ \theta &=& -51.9112271190180^{\circ} + 180^{\circ} \quad & | \quad II.\text{Quadrant} \\ \theta &=& 128.088772881^{\circ} \\ \theta &\approx& 128.0888^{\circ} \\ \hline \end{array}\)

 

laugh

heureka  Mar 20, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.