+0  
 
0
34
2
avatar

(ax-7)(bx+5) = 6x2+cx-35    If ab=6 and a-b=-1 what are two possible values of c?

 

I don't know if I'm on the right track, but so far I've found out that c=5a-7b

Please solve this problem for me and show me how you did it! Thanks :)

 

a) c=2 or c=-4

b) c=11 or c=-11

c) c=-2 or c=4

d) c=12 or c=-5

Guest Feb 14, 2018
Sort: 

2+0 Answers

 #1
avatar+333 
+1

a=2

b=3

(2x-7)(3x+5) substitute

6x²+10x-21x-35 expand

6x²-11x-35 rearrange

c=-11

or

c=11

choose option b)

 

 

winkwinkwink

lynx7  Feb 14, 2018
edited by lynx7  Feb 14, 2018
edited by lynx7  Feb 14, 2018
edited by lynx7  Feb 14, 2018
 #2
avatar+82916 
+2

(ax-7)(bx+5) = 6x^2+cx-35    If ab = 6 and a - b =  -1 what are two possible values of c?

 

(ab x^2  - 7bx + 5ax  -  35)  =  6x^2 + cx  -35

 

6x^2  + ( 5a - 7b) x - 35   =   6x^2  +  cx  -  35

 

5a  - 7b   =  c

 

If   a  - b  = - 1      then     b  =  a + 1

 

And

 

ab  = 6   ⇒   b   =  6/a

 

So

 

b   =   b

 

a  + 1   =  6/a           multiply through by a    and rearrange

 

a^2  + a  -  6   =  0   factor

 

(a - 2)  ( a + 3)  =  0      

 

Set each factor to 0  and solve and we get that   a  = 2  , a  = -3

 

When a  =  2      b  =  6 / a   =  3

When  a  = - 3     b  =  6/-3  =  -2

 

So

 

(a, b )  =   (2, 3)   or  ( -3, -2)

 

Using   5a  - 7b  = c

 

5(2)  - 7(3)  =  c  =  - 11

5(-3) - 7(-2)  = c  =  -1

 

Proof

a = 2  b = 3

( 2x - 7) ( 3x +  5)  =  6x^2  - 21x + 10x - 35   = 6x^2 - 11x - 35   ⇒   c  =  11

a = - 3, b = -2

(-3x - 7) (-2x + 5)  =   6x^2  - 15x + 14x - 25 = 6x^2 - 1x - 35       ⇒  c  = -1

 

 

cool cool cool

CPhill  Feb 14, 2018

12 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details