+0

# Simple rules of differentiation

+2
255
4

Why is this true?

Differentiation of xn

f(x) = xn

f'(x) = nx(n-1)

Can someone explain? Thanks.

Guest Jul 25, 2017
Sort:

#1
+6913
+3

Use the first principles.

$$\dfrac{d}{dx}x^n\\ =\displaystyle\lim_{h\rightarrow 0}\dfrac{(x+h)^n-x^n}{h}\\ =\displaystyle\lim_{h\rightarrow 0}\dfrac{x^n+\binom{n}{1}x^{n-1}h+...-x^n}{h}\\\text{other terms are negligible as they evaluate to 0 after taking limit.}\\ =\displaystyle \lim_{h\rightarrow 0}\dfrac{nhx^{n-1}}{h} + \text{lots of negligible terms which evaluates to 0}\\ =\displaystyle \lim_{h\rightarrow 0}nx^{n-1}\\ =nx^{n-1}\text{ YAY}$$

MaxWong  Jul 25, 2017
#2
+19207
+4

Simple rules of differentiation

Why is this true?

Differentiation of xn

f(x) = xn

f'(x) = nx(n-1)

difference quotient:

$$\begin{array}{|rcll|} \hline \frac{\Delta y}{\Delta x} &=& \frac{(x+h)^n-x^n}{h} \\ \frac{\Delta y}{\Delta x} &=& \frac{ \binom n0 x^n + \binom n1 x^{n-1}h+ \binom n2 x^{n-2}h^2\ldots + \binom nn h^n -x^n }{h} \quad & | \quad \binom n0 = 1 \\ \frac{\Delta y}{\Delta x} &=& \frac{ x^n + \binom n1 x^{n-1}h+ \binom n2 x^{n-2}h^2\ldots + \binom nn h^n -x^n }{h} \\ \frac{\Delta y}{\Delta x} &=& \frac{ \binom n1 x^{n-1}h+ \binom n2 x^{n-2}h^2\ldots + \binom nn h^n }{h} \\ \frac{\Delta y}{\Delta x} &=& \binom n1 x^{n-1}+ \binom n2 x^{n-2}h^1\ldots + \binom nn h^{n-1} \quad & | \quad \binom n1 = n \\ \frac{\Delta y}{\Delta x} &=& n x^{n-1}+ \binom n2 x^{n-2}h\ldots + \binom nn h^{n-1} \\ \hline \end{array}$$

differential quotient:

$$\begin{array}{|rcll|} \hline \frac{\delta y}{\delta x} =f'(x) &=& \lim \limits_{h\to 0} \left( n x^{n-1}+ \binom n2 x^{n-2}h\ldots + \binom nn h^{n-1} \right) \\ f'(x) &=& n x^{n-1}+ \binom n2 x^{n-2}\times 0 \ldots + \binom nn \times 0^{n-1} \\ f'(x) &=& n x^{n-1} + 0 \ldots +0 \\ f'(x) &=& n x^{n-1} \\ \hline \end{array}$$

heureka  Jul 25, 2017
#3
+6913
0

Seems like I still need to learn how to show my points... :D

MaxWong  Jul 25, 2017
#4
0

Love you two so much!

Guest Jul 25, 2017

### 33 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details