+0  
 
+2
303
4
avatar

Why is this true?

Differentiation of xn

 

f(x) = xn

f'(x) = nx(n-1)

 

Can someone explain? Thanks.

Guest Jul 25, 2017
 #1
avatar+7002 
+3

Use the first principles.

\(\dfrac{d}{dx}x^n\\ =\displaystyle\lim_{h\rightarrow 0}\dfrac{(x+h)^n-x^n}{h}\\ =\displaystyle\lim_{h\rightarrow 0}\dfrac{x^n+\binom{n}{1}x^{n-1}h+...-x^n}{h}\\\text{other terms are negligible as they evaluate to 0 after taking limit.}\\ =\displaystyle \lim_{h\rightarrow 0}\dfrac{nhx^{n-1}}{h} + \text{lots of negligible terms which evaluates to 0}\\ =\displaystyle \lim_{h\rightarrow 0}nx^{n-1}\\ =nx^{n-1}\text{ YAY}\)

MaxWong  Jul 25, 2017
 #2
avatar+19639 
+4

Simple rules of differentiation

Why is this true?

Differentiation of xn

f(x) = xn

f'(x) = nx(n-1)

 

difference quotient:

\(\begin{array}{|rcll|} \hline \frac{\Delta y}{\Delta x} &=& \frac{(x+h)^n-x^n}{h} \\ \frac{\Delta y}{\Delta x} &=& \frac{ \binom n0 x^n + \binom n1 x^{n-1}h+ \binom n2 x^{n-2}h^2\ldots + \binom nn h^n -x^n }{h} \quad & | \quad \binom n0 = 1 \\ \frac{\Delta y}{\Delta x} &=& \frac{ x^n + \binom n1 x^{n-1}h+ \binom n2 x^{n-2}h^2\ldots + \binom nn h^n -x^n }{h} \\ \frac{\Delta y}{\Delta x} &=& \frac{ \binom n1 x^{n-1}h+ \binom n2 x^{n-2}h^2\ldots + \binom nn h^n }{h} \\ \frac{\Delta y}{\Delta x} &=& \binom n1 x^{n-1}+ \binom n2 x^{n-2}h^1\ldots + \binom nn h^{n-1} \quad & | \quad \binom n1 = n \\ \frac{\Delta y}{\Delta x} &=& n x^{n-1}+ \binom n2 x^{n-2}h\ldots + \binom nn h^{n-1} \\ \hline \end{array} \)

 

 

differential quotient:

\(\begin{array}{|rcll|} \hline \frac{\delta y}{\delta x} =f'(x) &=& \lim \limits_{h\to 0} \left( n x^{n-1}+ \binom n2 x^{n-2}h\ldots + \binom nn h^{n-1} \right) \\ f'(x) &=& n x^{n-1}+ \binom n2 x^{n-2}\times 0 \ldots + \binom nn \times 0^{n-1} \\ f'(x) &=& n x^{n-1} + 0 \ldots +0 \\ f'(x) &=& n x^{n-1} \\ \hline \end{array} \)

 

 

laugh

heureka  Jul 25, 2017
 #3
avatar+7002 
0

Your answer is nice :O

Seems like I still need to learn how to show my points... :D

MaxWong  Jul 25, 2017
 #4
avatar
0

Love you two so much!

Guest Jul 25, 2017

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.