+0  
 
0
20
1
avatar+4 

qp^_3/4r^5/4*p^_1/2q^2/3r^_4/3

 

need help! 

 May 30, 2024

Best Answer 

 #1
avatar+1894 
+1

I'm not exactly sure if I'm doing correctly, but I'll try my best. 

 

First off, let's note that \(a^x \cdot a^y = a^{x+y}\)

 

Using this logic, we would have \(q^{\frac{5}{3}}p^{\frac{5}{4}}r^{\frac{31}{12}}\)

 

In order to not have fractional exponents, we would have to put these into radical form. 

 

Note that \(a^{x/y} = \sqrt[y]{a^x}\).

 

We would get \(\sqrt[3]{q^5} \cdot \sqrt[4]{p^5} \cdot \sqrt[12]{r^{31}} \).

 

I hope I answered your question!

 

Thanks! :) 

 May 31, 2024
 #1
avatar+1894 
+1
Best Answer

I'm not exactly sure if I'm doing correctly, but I'll try my best. 

 

First off, let's note that \(a^x \cdot a^y = a^{x+y}\)

 

Using this logic, we would have \(q^{\frac{5}{3}}p^{\frac{5}{4}}r^{\frac{31}{12}}\)

 

In order to not have fractional exponents, we would have to put these into radical form. 

 

Note that \(a^{x/y} = \sqrt[y]{a^x}\).

 

We would get \(\sqrt[3]{q^5} \cdot \sqrt[4]{p^5} \cdot \sqrt[12]{r^{31}} \).

 

I hope I answered your question!

 

Thanks! :) 

NotThatSmart May 31, 2024

3 Online Users