+0  
 
0
324
3
avatar+644 

Simplify (i+1)^{3200}-(i-1)^{3200}

waffles  Oct 29, 2017
 #1
avatar
0

Simplify (i+1)^{3200}-(i-1)^{3200}

 

= 2^1600  -   2^1600 =0  {Per Mathematica 11] !!!!.

Guest Oct 29, 2017
 #2
avatar+89819 
+1

(i + 1)^3200  =

 

i^3200 + ai^3199 + bi^3198  + ci^3197 + di^3196 +  .....+ di^4 + ci^3 + bi ^2 + ai + 1

 

 

(i - 1)^3200  = 

 

i^3200 - ai^3199 + bi^3198  - ci^3197 + di^3196 -  .....+ di^4 - ci^3 + bi ^2 - ai + 1

 

So

 

(i + 1)^3200  - (i - 1)^3200    leaves

 

2 [ ai^3199 +  ci^3197 + ......+ ci^3 + ai  ]   =

 

2  [ a (-i + i)  + c (i + - i)  +  e( -i + i) + g ( i + - i)  +  ....... ]  =  

 

2 [ a * 0  +  c * 0  +  e * 0  + g * 0  +  ......  ]  =

 

2 [ 0 ]  =

 

0

 

 

 

cool cool cool

CPhill  Oct 30, 2017
edited by CPhill  Oct 30, 2017
edited by CPhill  Oct 30, 2017
 #3
avatar+20024 
+1

Simplify (i+1)^{3200}-(i-1)^{3200}

 

\(\begin{array}{|rclrcl|} \hline && \mathbf{(i+1)^{3200}-(i-1)^{3200}} \\ &=& (i+1)^{2\cdot 1600}-(i-1)^{2\cdot 1600} \\ &=& \left( (i+1)^{2} \right)^{1600}- \left( (i-1)^{2} \right)^{1600} \quad & |\quad (i+1)^{2} &=& i^2+2i+1 \qquad i^2 = -1\\ && \quad & \quad &=& -1+2i+1 \\ && \quad & \quad &=& 2i \\ &=& (2i)^{1600} - \left( (i-1)^{2} \right)^{1600} \quad & |\quad (i-1)^{2} &=& i^2-2i+1 \qquad i^2 = -1\\ && \quad & \quad &=& -1-2i+1 \\ && \quad & \quad &=& -2i \\ &=& (2i)^{1600} - (-2i)^{1600} \\ &=& (2i)^{1600} - (-1)^{1600}(2i)^{1600} \quad & \quad (-1)^{1600} = 1 \\ &=& (2i)^{1600} - (2i)^{1600} \\ &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)

 

laugh

heureka  Oct 30, 2017
edited by heureka  Oct 30, 2017

33 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.