simplify in radiacal expression \(\sqrt{ \dfrac{ \sqrt{5} - \sqrt{2} }{ \sqrt{5} + \sqrt{2} } } + \sqrt{ \dfrac{ \sqrt{5} + \sqrt{2} }{ \sqrt{5} - \sqrt{2} }} \,\)
We want to simplify sqrt((sqrt(5) - sqrt(2))/(sqrt(5) + sqrt(2))) + sqrt((sqrt(5) + sqrt(2))/(sqrt(5) - sqrt(2)))
Rationalizing the denominator, we get sqrt((sqrt(5) - sqrt(2))^2) + sqrt((sqrt(5) + sqrt(2))^2
= sqrt(5) - sqrt(2) + sqrt(5) + sqrt(2)
= 2*sqrt(5).
The final answer is 2*sqrt(5).