+0  
 
+1
1
2
avatar+31 

simplify in radiacal expression \(\sqrt{ \dfrac{ \sqrt{5} - \sqrt{2} }{ \sqrt{5} + \sqrt{2} } } + \sqrt{ \dfrac{ \sqrt{5} + \sqrt{2} }{ \sqrt{5} - \sqrt{2} }} \,\)

 Jul 26, 2024

Best Answer 

 #2
avatar+129829 
+3

Simplifying, we have

 

 sqrt [ ( sqrt 5 - sqrt 2)^2 ] + sqrt [ (sqrt 5 + sqrt 2)^2 ]

___________________________________________   =

                sqrt [ 5 - 2 ]

 

[ sqrt 5 - sqrt 2  ] + [ sqrt 5 + sqrt 2 ]

____________________________     =

                 sqrt 3

 

2sqrt 5

______  =

  sqrt 3

 

(2/3) sqrt 15

 

cool cool cool

 Jul 26, 2024
 #1
avatar+864 
-3

We want to simplify sqrt((sqrt(5) - sqrt(2))/(sqrt(5) + sqrt(2))) + sqrt((sqrt(5) + sqrt(2))/(sqrt(5) - sqrt(2)))

 

Rationalizing the denominator, we get sqrt((sqrt(5) - sqrt(2))^2) + sqrt((sqrt(5) + sqrt(2))^2

 

= sqrt(5) - sqrt(2) + sqrt(5) + sqrt(2)

 

 = 2*sqrt(5).

 

The final answer is 2*sqrt(5).

 Jul 26, 2024
 #2
avatar+129829 
+3
Best Answer

Simplifying, we have

 

 sqrt [ ( sqrt 5 - sqrt 2)^2 ] + sqrt [ (sqrt 5 + sqrt 2)^2 ]

___________________________________________   =

                sqrt [ 5 - 2 ]

 

[ sqrt 5 - sqrt 2  ] + [ sqrt 5 + sqrt 2 ]

____________________________     =

                 sqrt 3

 

2sqrt 5

______  =

  sqrt 3

 

(2/3) sqrt 15

 

cool cool cool

CPhill Jul 26, 2024

0 Online Users