+0  
 
0
84
1
avatar+68 

1. Simplify sqrt108x^5y^8

2. Simplify (sqrt3) - (sqrt2)/(sqrt3) + (sqrt2)

3. Rewrite 32^5/3 as a radical expression and then simplify

brandyscott29  Feb 28, 2017
Sort: 

1+0 Answers

 #1
avatar+75299 
+5

1. Simplify sqrt108x^5y^8

 

I'm assuming that x and y are positive

 

√[ 108 x^5 y^8]  =  √[36 *3 * x^4 * x * y^8 ] =  6x^2y^4 √ [ 3x]

 

 

2. Simplify (sqrt3) - (sqrt2)/(sqrt3) + (sqrt2)

 

[ √3 - √2 ] / [ √3 + √2 ]       multiply top/bottom by √3 - √2

 

 ( [ √3 - √2 ] [ √3 - √2 ] ) / ( [ √3 + √2 ] [ √3 - √2 ] )   =

 

( 3 - 2√6 + 2 ) / ( 3  - 2)  =

 

[ 5 - 2√6 ] / 1  =

 

[ 5 - 2√6 ]

 

 

 

3. Rewrite 32^5/3 as a radical expression and then simplify

 

 

32^(5/3)   =   3√[ 32^5] = 3√[ (2^5)^5]  =  3√[ 2^25]   = 2^8* 3√2  = 256 3√2

 

 

cool cool cool

CPhill  Feb 28, 2017

15 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details