$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{6}}\right)}{\mathtt{\,\times\,}}{{\mathtt{Y}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{3}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{-{\mathtt{8}}}\right)}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}$$
$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{6}}\right)}{\mathtt{\,\times\,}}{{\mathtt{Y}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{3}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{8}}\right)}\right)}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$
$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{9}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{8}}\right)}\right)}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$
$${{\mathtt{Y}}}^{{\mathtt{0}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$
$${\mathtt{1}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$
$${\mathtt{1}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{1}}}$$
$${{\mathtt{X}}}^{{\mathtt{1}}}$$
$${\mathtt{X}}$$
.$$\frac{y^3 \cdot x^{(-6)} \cdot y^2 \cdot x^{(-3)}}{y^5 \cdot x^{-8}} \cdot x^2 = x^{(-6)+(-3)-(-8)+(2)} \cdot y^{3+2-5} = x^1 \cdot y^0 = x$$
doesn't get much simpler than that.
$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{6}}\right)}{\mathtt{\,\times\,}}{{\mathtt{Y}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{3}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{8}}\right)}\right)}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$
$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{9}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{8}}\right)}\right)}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$
$${{\mathtt{Y}}}^{{\mathtt{0}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$
$${\mathtt{1}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$
$${\mathtt{1}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{1}}}$$
$${{\mathtt{X}}}^{{\mathtt{1}}}$$
$${\mathtt{X}}$$