+0  
 
0
580
3
avatar+1904 

$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{6}}\right)}{\mathtt{\,\times\,}}{{\mathtt{Y}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{3}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{-{\mathtt{8}}}\right)}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}$$

 Mar 15, 2015

Best Answer 

 #2
avatar+1904 
+6

$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{6}}\right)}{\mathtt{\,\times\,}}{{\mathtt{Y}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{3}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{8}}\right)}\right)}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$

 

$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{9}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{8}}\right)}\right)}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$

 

$${{\mathtt{Y}}}^{{\mathtt{0}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$

 

$${\mathtt{1}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$

 

$${\mathtt{1}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{1}}}$$

 

$${{\mathtt{X}}}^{{\mathtt{1}}}$$

 

$${\mathtt{X}}$$

.
 Mar 16, 2015
 #1
avatar+66 
+5

$$\frac{y^3 \cdot x^{(-6)} \cdot y^2 \cdot x^{(-3)}}{y^5 \cdot x^{-8}} \cdot x^2 = x^{(-6)+(-3)-(-8)+(2)} \cdot y^{3+2-5} = x^1 \cdot y^0 = x$$

doesn't get much simpler than that.

 Mar 15, 2015
 #2
avatar+1904 
+6
Best Answer

$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{6}}\right)}{\mathtt{\,\times\,}}{{\mathtt{Y}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{3}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{8}}\right)}\right)}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$

 

$${\frac{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{9}}\right)}\right)}{\left({{\mathtt{Y}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{8}}\right)}\right)}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$

 

$${{\mathtt{Y}}}^{{\mathtt{0}}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$

 

$${\mathtt{1}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{\left(-{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{2}}}$$

 

$${\mathtt{1}}{\mathtt{\,\times\,}}{{\mathtt{X}}}^{{\mathtt{1}}}$$

 

$${{\mathtt{X}}}^{{\mathtt{1}}}$$

 

$${\mathtt{X}}$$

gibsonj338 Mar 16, 2015
 #3
avatar+129852 
+5

Your presentations are very "clean,"  gibsonj338......!!!!

Nice work  !!!

 

  

 Mar 16, 2015

3 Online Users

avatar