We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
223
1
avatar+559 

Simplify the expression

 Feb 7, 2018

Best Answer 

 #1
avatar
0

Simplify the following:

(x^2 + 3 x - 28)/(x^2 - 7 x + 12)

 

Factor x^2 - 7 x + 12 by finding two numbers whose product is 12 and whose sum is -7.

The factors of 12 that sum to -7 are -3 and -4. So, x^2 - 7 x + 12 = (x - 3) (x - 4):

(x^2 + 3 x - 28)/((x - 3) (x - 4))

 

Factor x^2 + 3 x - 28 by finding two numbers whose product is -28 and whose sum is 3.

The factors of -28 that sum to 3 are 7 and -4. So, x^2 + 3 x - 28 = (x + 7) (x - 4):

((x + 7) (x - 4))/((x - 3) (x - 4))

 

Cancel common terms in the numerator and denominator of ((x + 7) (x - 4))/((x - 3) (x - 4)).

((x + 7) (x - 4))/((x - 3) (x - 4)) = (x - 4)/(x - 4)×(x + 7)/(x - 3) = (x + 7)/(x - 3):

 

=(x + 7) / (x - 3)

 Feb 7, 2018
 #1
avatar
0
Best Answer

Simplify the following:

(x^2 + 3 x - 28)/(x^2 - 7 x + 12)

 

Factor x^2 - 7 x + 12 by finding two numbers whose product is 12 and whose sum is -7.

The factors of 12 that sum to -7 are -3 and -4. So, x^2 - 7 x + 12 = (x - 3) (x - 4):

(x^2 + 3 x - 28)/((x - 3) (x - 4))

 

Factor x^2 + 3 x - 28 by finding two numbers whose product is -28 and whose sum is 3.

The factors of -28 that sum to 3 are 7 and -4. So, x^2 + 3 x - 28 = (x + 7) (x - 4):

((x + 7) (x - 4))/((x - 3) (x - 4))

 

Cancel common terms in the numerator and denominator of ((x + 7) (x - 4))/((x - 3) (x - 4)).

((x + 7) (x - 4))/((x - 3) (x - 4)) = (x - 4)/(x - 4)×(x + 7)/(x - 3) = (x + 7)/(x - 3):

 

=(x + 7) / (x - 3)

Guest Feb 7, 2018

15 Online Users

avatar
avatar