( ( 3 + sqrt(5) ) ( sqrt(5) -2 ) ) / (5 - sqrt (5) )
I know the answer is sqrt (5) / 5
I just need the exact path
Let's work on numerator first expand
3sqrt5 - 6 +5 -2sqrt5 = sqrt5 -1
so you have ( sqrt5-1) / ( 5-sqrt5) now multiply and expand by (5+sqrt5)/(5+sqrt5)=
(5sqrt5 +5 -5 -sqrt5 ) / (25 + 5 sqrt5-5sqrt5 -5) Simplify by collecting like terms
4sqrt5 / 20 and now, simplify the fraction
sqrt5 / 5
Simplify the following:
((3 + sqrt(5)) (sqrt(5) - 2))/(5 - sqrt(5))
(3 + sqrt(5)) (sqrt(5) - 2) = 3 (-2) + 3 sqrt(5) + sqrt(5) (-2) + sqrt(5) sqrt(5) = -6 + 3 sqrt(5) - 2 sqrt(5) + 5 = sqrt(5) - 1:
(sqrt(5) - 1)/(5 - sqrt(5))
Multiply numerator and denominator of (sqrt(5) - 1)/(5 - sqrt(5)) by 5 + sqrt(5):
((sqrt(5) - 1) (5 + sqrt(5)))/((5 - sqrt(5)) (5 + sqrt(5)))
(5 - sqrt(5)) (5 + sqrt(5)) = 5×5 + 5 sqrt(5) - sqrt(5)×5 - sqrt(5) sqrt(5) = 25 + 5 sqrt(5) - 5 sqrt(5) - 5 = 20:
((sqrt(5) - 1) (5 + sqrt(5)))/(20)
(sqrt(5) - 1) (5 + sqrt(5)) = -5 - sqrt(5) + sqrt(5)×5 + sqrt(5) sqrt(5) = -5 - sqrt(5) + 5 sqrt(5) + 5 = 4 sqrt(5):
(4 sqrt(5))/(20)
4/20 = 4/(4×5) = 1/5:
Answer: |(sqrt(5))/(5)
Let's work on numerator first expand
3sqrt5 - 6 +5 -2sqrt5 = sqrt5 -1
so you have ( sqrt5-1) / ( 5-sqrt5) now multiply and expand by (5+sqrt5)/(5+sqrt5)=
(5sqrt5 +5 -5 -sqrt5 ) / (25 + 5 sqrt5-5sqrt5 -5) Simplify by collecting like terms
4sqrt5 / 20 and now, simplify the fraction
sqrt5 / 5
( ( 3 + sqrt(5) ) ( sqrt(5) -2 ) ) / (5 - sqrt (5) )
I know the answer is sqrt (5) / 5
\(\frac{(3+\sqrt 5)(\sqrt 5-2)}{5-\sqrt 5}\)
\(=\frac{3\sqrt 5-6+5-2\sqrt5}{5-\sqrt5}\) expand to the 3rd Binom
\(=\frac{\sqrt5-1}{5-\sqrt5}\times \frac{5+\sqrt5}{5+\sqrt5}\) \(\frac{multiply}{3rdBinom}\)
\(=\frac{5\sqrt5+5-5-\sqrt5}{25-5}\) add, subtract
\(=\frac{4\sqrt5}{20}\) shortened
\(\frac{(3+\sqrt 5)(\sqrt 5-2)}{5-\sqrt 5}\)\(=\frac{\sqrt 5}{5}\) !