We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
220
2
avatar+389 

this the answer that I got

 Mar 5, 2018
 #1
avatar+7354 
+3

\(\quad\frac{\frac{x^2+x-12}{x-2}}{\frac{3x^2+11x-4}{x^2-4}}\\ =\\ \quad\frac{x^2+x-12}{x-2}\cdot\frac{x^2-4}{3x^2+11x-4} \\ =\\ \quad\frac{(x+4)(x-3)}{(x-2)}\cdot\frac{(x+2)(x-2)}{3x^2+12x-x-4} \\ =\\ \quad\frac{(x+4)(x-3)}{(x-2)}\cdot\frac{(x+2)(x-2)}{3x(x+4)-1(x+4)} \\ =\\ \quad\frac{(x+4)(x-3)}{(x-2)}\cdot\frac{(x+2)(x-2)}{(x+4)(3x-1)} \\ =\\ \quad\frac{(x+4)(x-3)(x+2)(x-2)}{(x-2)(x+4)(3x-1)} \\ =\\ \quad\frac{(x-3)(x+2)}{(3x-1)} \qquad\text{and}\qquad x\neq-4\, \qquad x\neq2\\ =\\ \quad\frac{x^2-x-6}{3x-1} \)

.
 Mar 5, 2018
 #2
avatar+68 
+2

\(\frac{\frac{x^2+x-12}{x-2}}{\frac{3x^2+11x-4}{x^2-4}}\)

Simplify the polynomials.

\(\frac{\frac{(x+4)(x-3)}{x-2}}{\frac{(3x-1)(x+4)}{(x+2)(x-2)}}\)

Multiply the top and bottom fractions by (x+2)(x-2).

\(\frac{(x+4)(x-3)(x+2)}{(3x-1)(x+4)}\)

Cross out like terms.

\(\frac{(x-3)(x+2)}{(3x-1)}\)

Multiply the top polynomial out.

\(\frac{x^2-x+6}{3x-1}\)

 

Just a different way to look at it. :D

 Mar 5, 2018

30 Online Users

avatar
avatar
avatar
avatar