x2+x−12x−23x2+11x−4x2−4=x2+x−12x−2⋅x2−43x2+11x−4=(x+4)(x−3)(x−2)⋅(x+2)(x−2)3x2+12x−x−4=(x+4)(x−3)(x−2)⋅(x+2)(x−2)3x(x+4)−1(x+4)=(x+4)(x−3)(x−2)⋅(x+2)(x−2)(x+4)(3x−1)=(x+4)(x−3)(x+2)(x−2)(x−2)(x+4)(3x−1)=(x−3)(x+2)(3x−1)andx≠−4x≠2=x2−x−63x−1
.x2+x−12x−23x2+11x−4x2−4
Simplify the polynomials.
(x+4)(x−3)x−2(3x−1)(x+4)(x+2)(x−2)
Multiply the top and bottom fractions by (x+2)(x-2).
(x+4)(x−3)(x+2)(3x−1)(x+4)
Cross out like terms.
(x−3)(x+2)(3x−1)
Multiply the top polynomial out.
x2−x+63x−1
Just a different way to look at it. :D