+0  
 
0
70
2
avatar+258 

this the answer that I got

Hev123  Mar 5, 2018
Sort: 

2+0 Answers

 #1
avatar+7048 
+3

\(\quad\frac{\frac{x^2+x-12}{x-2}}{\frac{3x^2+11x-4}{x^2-4}}\\ =\\ \quad\frac{x^2+x-12}{x-2}\cdot\frac{x^2-4}{3x^2+11x-4} \\ =\\ \quad\frac{(x+4)(x-3)}{(x-2)}\cdot\frac{(x+2)(x-2)}{3x^2+12x-x-4} \\ =\\ \quad\frac{(x+4)(x-3)}{(x-2)}\cdot\frac{(x+2)(x-2)}{3x(x+4)-1(x+4)} \\ =\\ \quad\frac{(x+4)(x-3)}{(x-2)}\cdot\frac{(x+2)(x-2)}{(x+4)(3x-1)} \\ =\\ \quad\frac{(x+4)(x-3)(x+2)(x-2)}{(x-2)(x+4)(3x-1)} \\ =\\ \quad\frac{(x-3)(x+2)}{(3x-1)} \qquad\text{and}\qquad x\neq-4\, \qquad x\neq2\\ =\\ \quad\frac{x^2-x-6}{3x-1} \)

hectictar  Mar 5, 2018
 #2
avatar+68 
+2

\(\frac{\frac{x^2+x-12}{x-2}}{\frac{3x^2+11x-4}{x^2-4}}\)

Simplify the polynomials.

\(\frac{\frac{(x+4)(x-3)}{x-2}}{\frac{(3x-1)(x+4)}{(x+2)(x-2)}}\)

Multiply the top and bottom fractions by (x+2)(x-2).

\(\frac{(x+4)(x-3)(x+2)}{(3x-1)(x+4)}\)

Cross out like terms.

\(\frac{(x-3)(x+2)}{(3x-1)}\)

Multiply the top polynomial out.

\(\frac{x^2-x+6}{3x-1}\)

 

Just a different way to look at it. :D

CoopTheDupe  Mar 5, 2018

21 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy