We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
60
3
avatar

Simplify  \(\frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}}.\)

 Jun 27, 2019

Best Answer 

 #2
avatar+8406 
+2

\(S\ =\ \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\frac{1}{\sqrt{n}+\sqrt{n+1}}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\frac{1}{\sqrt{n}+\sqrt{n+1}}\cdot \frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\frac{\sqrt{n}-\sqrt{n+1}}{(n)-(n+1)}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\frac{\sqrt{n}-\sqrt{n+1}}{-1}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\sqrt{n+1}-\sqrt{n}\\~\\ S\ =\ {\color{}\sqrt2}-\sqrt1\ {\color{}+\sqrt3-\sqrt2+\sqrt4-\sqrt3+\sqrt5-\sqrt4+\dots+\sqrt{99}-\sqrt{98}}+\sqrt{100}\ {\color{}-\ \sqrt{99}}\\~\\ S\ =\ {\color{gray}\sqrt2}-\sqrt1\ {\color{gray}+\sqrt3-\sqrt2+\sqrt4-\sqrt3+\sqrt5-\sqrt4+\dots+\sqrt{99}-\sqrt{98}}+\sqrt{100}\ {\color{gray}-\ \sqrt{99}}\\~\\ S\ =\ -\sqrt1+\sqrt{100}\\~\\ S\ =\ -1+10\\~\\ S\ =\ 9 \)_

 Jun 27, 2019
 #1
avatar+101813 
+2

   1 (1 - √2)                  (1  - √2)             

______________   =___________  =     ( √2 - 1)

(1 + √2) ( 1 - √2)               -1

 

   1 ( √2 - √3)                  (√2  - √3)             

______________   =___________  =     ( √3 - √2)

(√2+ √3) ( √2 - √3)               -1

 

 

   1 ( √3 - √4)                   (√3  - √4)             

_______________   =  ___________  =     ( √4 - √3)

(√3 + √4) ( √3 - √4)               -1

 

So we have

 

-1  +   ( √2 - √2) + ( √3 - √3)  + ....... +  ( √99 - √99)  +    √100     =

 

-1   +         0       +         0        +........+          0         +     √100     =

 

-1  + √100 =

 

-1 +  10 =

 

9

 

 

cool cool cool

 Jun 27, 2019
 #2
avatar+8406 
+2
Best Answer

\(S\ =\ \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\frac{1}{\sqrt{n}+\sqrt{n+1}}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\frac{1}{\sqrt{n}+\sqrt{n+1}}\cdot \frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\frac{\sqrt{n}-\sqrt{n+1}}{(n)-(n+1)}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\frac{\sqrt{n}-\sqrt{n+1}}{-1}\\~\\ S\ =\ \sum\limits_{n=1}^{99}\sqrt{n+1}-\sqrt{n}\\~\\ S\ =\ {\color{}\sqrt2}-\sqrt1\ {\color{}+\sqrt3-\sqrt2+\sqrt4-\sqrt3+\sqrt5-\sqrt4+\dots+\sqrt{99}-\sqrt{98}}+\sqrt{100}\ {\color{}-\ \sqrt{99}}\\~\\ S\ =\ {\color{gray}\sqrt2}-\sqrt1\ {\color{gray}+\sqrt3-\sqrt2+\sqrt4-\sqrt3+\sqrt5-\sqrt4+\dots+\sqrt{99}-\sqrt{98}}+\sqrt{100}\ {\color{gray}-\ \sqrt{99}}\\~\\ S\ =\ -\sqrt1+\sqrt{100}\\~\\ S\ =\ -1+10\\~\\ S\ =\ 9 \)_

hectictar Jun 27, 2019
 #3
avatar
0

This sequence has this "closed form":

Sum =Sqrt(n) - 1, where n = Last term

Sum =Sqrt(100) - 1 = 9

IF: n = 4, Sum =Sqrt(4) - 1 = 1

      n = 121, Sum = Sqrt(121) - 1 = 10

      n = 961, Sum = Sqrt(961) - 1 = 30........and so on.

 Jun 27, 2019

10 Online Users