+0

# sin(12^12^14)

0
577
5

sin(12^12^14)

Nov 17, 2014

#2
+20831
+13

$$\small\text{  \sin{ ( 12^{12^{14}} \ensurement{^{\circ}} ) } \\ =\sin{ ( 12^{ 168 } \ensurement{^{\circ}} ) } \\ = \sin{ ( 216 \ensurement{^{\circ}} ) } \\ = -0.587785252292  }}$$

Nov 18, 2014

#1
+7188
+8

$$\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({{\left({{\mathtt{12}}}^{{\mathtt{12}}}\right)}}^{{\mathtt{14}}}\right)} = -{\mathtt{0.350\: \!397\: \!680\: \!546}}$$

.
Nov 17, 2014
#2
+20831
+13

$$\small\text{  \sin{ ( 12^{12^{14}} \ensurement{^{\circ}} ) } \\ =\sin{ ( 12^{ 168 } \ensurement{^{\circ}} ) } \\ = \sin{ ( 216 \ensurement{^{\circ}} ) } \\ = -0.587785252292  }}$$

heureka Nov 18, 2014
#3
+95177
0

I like that Heureka.  I would not thought to have used the mod function for this. Thanks ;)

Nov 18, 2014
#4
+20831
+8

sin(12^12^14)

Hi Melody,

here is the solution from WolframAlpha:

I think, the argument (12^12)^14 is to big for our calculator. But the mod - function is correct and departs from the argument multiple from 360 degrees.

The formula is  $$\sin(\alpha) = \sin(\alpha \pm n*360\ensurement{^{\circ}} )$$

.
Nov 19, 2014
#5
+95177
0

Thanks heureka,

This post is not just for heureka

I am still a little confused. Is there a glitch in the calculator?  Why wasn't happy's answer the same?

$$\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{400}}^\circ\right)} = {\mathtt{0.642\: \!787\: \!609\: \!687}}$$

$$\underset{\,\,\,\,^{{360^\circ}}}{{sin}}{\left({\mathtt{400}}{\mathtt{\,-\,}}{\mathtt{360}}\right)} = {\mathtt{0.642\: \!787\: \!609\: \!687}}$$

Okay so why was mod function necessary - was it just that the sine function could not handle an angle that  was so huge?

Nov 19, 2014