+0  
 
0
356
3
avatar

Sin(3x)=-0.6

Guest May 14, 2015

Best Answer 

 #2
avatar+18712 
+5

Sin(3x)=-0.6         x = ?

 

$$\small{\text{$
\begin{array}{|lrcl|lrcl|}
\hline
I.& &&& II. &\\
&&&& \boxed{\sin{(\alpha)} = \sin{(180\ensurement{^{\circ}}-\alpha)} }\\
\hline
& && && && \\
&\sin(3x) &=& -0.6 && \sin(180\ensurement{^{\circ}} -3x) &=& -0.6 \\
& && && && \\
&3x &=& \arcsin{(-0.6)} && 180\ensurement{^{\circ}} -3x &=& \arcsin{(-0.6)} \\
& && && && \\
&x &=& \dfrac{ \arcsin{(-0.6)}}{3} && 3x &=& 180\ensurement{^{\circ}} -\arcsin{(-0.6)} \\
& && && && \\
&x &=& -12.2899658819\ensurement{^{\circ}} \pm k\cdot 360\ensurement{^{\circ}} && x &=& \dfrac{ 180\ensurement{^{\circ}} -\arcsin{(-0.6)} }{3} \\
& && && && \\
& && && x &=& 72.2899658819\ensurement{^{\circ}} \pm k\cdot 360\ensurement{^{\circ}} \\
& && && && \\
\hline
\end{array}
$}}$$

k = 1,2, 3...

heureka  May 14, 2015
Sort: 

3+0 Answers

 #1
avatar+90970 
+5

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}^{\!\!\mathtt{-1}}{\left({\mathtt{0.6}}\right)} = {\mathtt{36.869\: \!897\: \!645\: \!844^{\circ}}}$$

 

 

$$\\3x=180+37, \;\; 360-37,.....\\\\
x=60+(37/3), \;\; 120-(37/3), .....\\\\
x=60n+(-1)^{(n+1)}(37/3)\qquad n\in Z\\\\
x=60n+(-1)^{(n+1)}(12)\qquad n\in Z \qquad $to the closest degrees$$$

 

Here is a graphical solution   

 

https://www.desmos.com/calculator/gsoviecfsi

Melody  May 14, 2015
 #2
avatar+18712 
+5
Best Answer

Sin(3x)=-0.6         x = ?

 

$$\small{\text{$
\begin{array}{|lrcl|lrcl|}
\hline
I.& &&& II. &\\
&&&& \boxed{\sin{(\alpha)} = \sin{(180\ensurement{^{\circ}}-\alpha)} }\\
\hline
& && && && \\
&\sin(3x) &=& -0.6 && \sin(180\ensurement{^{\circ}} -3x) &=& -0.6 \\
& && && && \\
&3x &=& \arcsin{(-0.6)} && 180\ensurement{^{\circ}} -3x &=& \arcsin{(-0.6)} \\
& && && && \\
&x &=& \dfrac{ \arcsin{(-0.6)}}{3} && 3x &=& 180\ensurement{^{\circ}} -\arcsin{(-0.6)} \\
& && && && \\
&x &=& -12.2899658819\ensurement{^{\circ}} \pm k\cdot 360\ensurement{^{\circ}} && x &=& \dfrac{ 180\ensurement{^{\circ}} -\arcsin{(-0.6)} }{3} \\
& && && && \\
& && && x &=& 72.2899658819\ensurement{^{\circ}} \pm k\cdot 360\ensurement{^{\circ}} \\
& && && && \\
\hline
\end{array}
$}}$$

k = 1,2, 3...

heureka  May 14, 2015
 #3
avatar+90970 
0

I think our answers are probably the same Heureka   

Melody  May 14, 2015

17 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details