$$$$\sin^4{A}-\cos^4{A}=(\sin^2{A}-\cos^2{A})(\sin^2{A}+\cos^2{A})$$\\
\\
$$\sin^2{A}+\cos^2{A}=1$$\\
$$\sin^2{A}-\cos^2{A}=1-\cos^2{A}-\cos^2{A}=1-2\cos^2{A}$$\\
\\
So, using the last two lines in the first line we have:\\
$$\sin^4{A}-\cos^4{A}=1-2\cos^2{A}$$
.